Топ питань
Часова шкала
Чат
Перспективи

Гіпотеза Коллатца

З Вікіпедії, вільної енциклопедії

Remove ads

Гіпотеза Коллатца (гіпотеза 3n+1, гіпотеза 3x+1, проблема Коллатца, проблема 3n+1, проблема 3x+1, Сіракузька проблема) — одна з нерозв'язаних проблем математики, названа на честь німецького математика Лотара Коллатца, який запропонував її у 1937 році.

Коротка інформація Названо на честь, Головний предмет твору ...
Remove ads

Сіракузька послідовність

Узагальнити
Перспектива

Для пояснення суті гіпотези розглянемо наступну послідовність чисел, яка називається Сіракузькою послідовністю. Беремо будь-яке натуральне число n. Якщо воно парне, то ділимо його на 2, а якщо непарне, то множимо на 3 і додаємо 1 (отримуємо 3n + 1). Над отриманим числом виконуємо ті ж самі дії, і так далі.

Thumb
Графік послідовності для числа 27

Наприклад, для числа 3 отримуємо:

3 — непарне, 3 × 3 + 1 = 10
10 — парне, 10:2 = 5
5 — непарне, 5 × 3 + 1 = 16
16 — парне, 16:2 = 8
8 — парне, 8:2 = 4
4 — парне, 4:2 = 2
2 — парне, 2:2 = 1
1 — непарне, 1 × 3 + 1 = 4

Очевидно, що, починаючи з 1, починають циклічно повторюватися числа 1, 4, 2.

Для числа 27 маємо : 27, 82, 41, 124 , 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232, 4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1, …

Послідовність прийшла до одиниці тільки через 111 кроків, досягнувши пікового значення 9232.

Гіпотеза Коллатца полягає в тому, що яке б початкове число ми не взяли, рано чи пізно ми отримаємо одиницю.

Числа — градини — також поширена назва для сукупності розглянутих послідовностей. Така назва виникла через те, що графіки послідовностей (див. ілюстрацію) схожі на траєкторію руху градин в атмосфері.

Remove ads

Проєкт «Collatz Conjecture»

У серпні 2009 року на платформі BOINC був запущений проєкт добровільних розподілених обчислень «Collatz Conjecture [Архівовано 4 грудня 2017 у Wayback Machine.]», метою якого є перевірка гіпотези Коллатца на великих числах. Обчислювальний модуль проєкту може використовувати обчислювальні потужності сучасних відеокарт для одночасної обробки і вирахування послідовностей.

Візуалізація

Аргументи на користь теорії

Хоча гіпотеза не була доведена, більшість математиків, які розглядали цю проблему, вважають гіпотезу істинною, тому що експериментальні дані і евристичні міркування підтримують її.

Ймовірнісний підхід

Якщо врахувати тільки непарні числа в послідовності, породженій процесом Коллатц, то кожне непарне число складає в середньому 3/4 попереднього. З цього витікає евристичний аргумент, що будь-яка послідовність чисел-градин повинна зменшуватись в довгостроковій перспективі, хоча це не є аргументом проти інших циклів, тільки проти дивергенції. Аргумент не є доказом, оскільки він припускає, що послідовності градини збираються з некорельованих ймовірнісних подій.

Строгі обмеження

Хоча достеменно не відомо чи всі додатні числа в кінцевому підсумку зводяться до одиниці відповідно до гіпотези Коллатца, відомо, що багато чисел дійсно зводяться. Зокрема, Красиков і Лагарис довели, що кількість цілих чисел в інтервалі [1, х], що в кінцевому підсумку зводяться до одиниці, принаймні пропорційна x0.84.

Remove ads

Цикли

Узагальнити
Перспектива

У цій частині розглянемо скорочену форму функції КоллатцаЦикл — це послідовність (a0, a1, ..., aq) різних натуральних чисел, де f(a0) = a1, f(a1) = a2, … і f(aq) = a0.

Єдиним відомим циклом є (1,2) з періодом 2, який називають тривіальним циклом.

Довжина циклу

Відомо, що довжина нетривіального циклу становить не менше 17087915[1]. Точніше, Еліаху довів, що період p будь-якого нетривіального циклу має виглядде a, b і c — цілі невід'ємні числа, b ≥ 1 і ac = 0 (тобто, хоча б одне з чисел a чи c дорівнює нулю). Цей результат ґрунтується на розкладі ln 3/ln 2 в ланцюговий дріб.

Подібне міркування, яке враховує нещодавню перевірку гіпотези до 268, призводить до покращеної нижньої межі 114208327604 (або 186265759595 без «ярлика»). Ця нижня межа узгоджується з наведеним вище результатом, оскільки 114208327604 = 17087915 × 361 + 85137581 × 1269.

k-цикли

k -цикл — це цикл, який можна розбити на 2k неперервних підпослідовностей: k послідовностей непарних чисел, що зростають, які чергуються з k спадними послідовностями парних чисел[2]. Наприклад, якщо цикл складається з однієї зростаючої послідовності непарних чисел, за якою йде спадна послідовність парних чисел, він називається 1-циклом.

Штайнер (1977) довів, що не існує 1-циклу, крім тривіального (1; 2)[3]. Сімонс (2005) за допомогою методу Штайнера довів, що не існує 2-циклу[4]. Сімонс і де Вегер (2005) розширили це доведення до 68-циклів: немає k-циклу до k = 68[2]. Для кожного k поза 68 цей метод дає верхню межу для найменшого члена k-циклу: наприклад, якщо є 77-цикл, тоді принаймні один елемент циклу менший за 38137×250[2]. Разом із перевіркою гіпотези до 268 це означає відсутність нетривіального k-циклу до k = 77[5]. У міру просування комп'ютерних пошуків, більші значення k можуть бути виключені. Простішими словами: нам не потрібно шукати цикли, які мають щонайбільше 77 циклів, де кожен контур складається з послідовних підйомів, за якими йдуть послідовні спади.

Remove ads

Див. також

Примітки

Література

Примітки

Посилання

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads