Топ питань
Часова шкала
Чат
Перспективи
Квадратний корінь з двох
З Вікіпедії, вільної енциклопедії
Remove ads
Квадратний корінь з числа 2 — дійсне число більше нуля, яке при множенні саме на себе дає число 2. Позначення: Приведемо значення кореня з 2 з 65 знаками після коми:
- 1,414 213 562 373 095 048 801 688 724 209 698 078 569 671 875 376 948 073 176 679 737 99…

Геометричний корінь з 2 можливо представити як довжину діагоналі квадрата зі стороною 1 (це слідує з теореми Піфагора). Можливо, це було перше відоме в історії математики ірраціональне число (тобто число, яке неможливо точно представити у вигляді дробу).

Гарним і часто використовуваним наближенням до є дріб . Незважаючи на те, що чисельник і знаменник дробу лише двозначні цілі, воно відрізняється від реального значення менше, ніж на 1/10000.
Remove ads
Історія
Узагальнити
Перспектива

Вавилонська глиняна табличка (1900 до н. е. — 1650 до н. е.) дає найточніше наближене значення при записі в чотирьох шістдесяткових цифрах, що після округлення становить 6 точних десяткових цифр:
Інше раннє наближення цього числа в давньоіндійському математичному тексті, Шульба-сутри (бл. 800–200 до н. е.) дається наступним чином:
Піфагорійці виявили, що діагональ квадрата непорівнянна з його стороною, або сучасною мовою, що квадратний корінь з двох є ірраціональним. Мало що відомо з певністю про час і обставини цього видатного відкриття, але традиційно його авторство приписується Гіппасу Метапонтському, якого за це відкриття, за різними варіантами легенди, піфагорійці не то вбили, не то вигнали, поставивши йому в провину руйнування головної піфагорейської доктрини про те, що «все є натуральне число». Тому квадратний корінь з 2 іноді називають постійною Піфагора, через те, що саме піфагорійці довели його ірраціональність, тим самим відкривши існування ірраціональних чисел.
Remove ads
Алгоритми обчислення
Узагальнити
Перспектива
Існує безліч алгоритмів для обчислення значення квадратного кореня з двох. В результаті алгоритму виходить приблизне значення у вигляді звичайної або десяткового дробу. Найпопулярніший алгоритм для цього, який використовується в багатьох комп'ютерах і калькуляторах, це вавилонський метод обчислення квадратних коренів. Він полягає в наступному:
Чим більше повторень в алгоритмі (тобто, чим більше «n»), тим краще наближення квадратного кореня з двох. Кожне повторення приблизно подвоює кількість правильних цифр. Наведемо кілька перших наближень:
- 3/2 = 1.5
- 17/12 = 1.416…
- 577/408 = 1.414215…
- 665857/470832 = 1.4142135623746…
У 1997 році Ясумаса Канада вирахував значення √2 до 137 438 953 444 десяткових знаків після коми. У лютому 2007 року рекорд був побитий: Сігеру Кондо вирахував 200 мільярдів десяткових знаків після коми протягом 13 днів і 14 годин, використовуючи процесор з частотою 3,6 ГГц і 16 гігабайт оперативної пам'яті. Серед математичних констант тільки було обчислено більш точно.
Remove ads
Властивості квадратного кореня з двох
Узагальнити
Перспектива
Половина √2 приблизно дорівнює 0.70710 67811 86548; ця величина дає в геометрії та тригонометрії координати одиничного вектора, який утворює кут 45° з координатними осями:
Одна з цікавих властивостей √2 полягає в наступному:
- . Тому що
Це є результатом властивості срібного перетину.
Друга цікава властивість √2:
Квадратний корінь з двох може бути виражений в уявних одиницях , використовуючи тільки квадратні корені і арифметичні операції:
- і
Квадратний корінь з 2 є єдиним числом, відмінним від 1, чия нескінченна тетрація дорівнює його квадрату.
Квадратний корінь з двох може бути також використаний для наближення :
З точки зору вищої алгебри, є коренем многочлена і тому є цілим алгебраїчним числом. Множина чисел виду , де — раціональне число, створює алгебраїчне поле. Воно позначається і є підполем поля дійсних чисел.
Remove ads
Доказ ірраціональності
Застосуємо доказ від протилежного: нехай, раціональний, тобто представляється у вигляді дробу , де і — цілі числа. Піднесемо рівність в квадрат:
- .
Так як m2 містить парне число двійок, а 2n2 — непарне число двійок, отже рівність m2=2n2 неможлива. Це означає, що вихідне припущення було невірним, і — ірраціональне число.
Remove ads
Ланцюговий дріб
Узагальнити
Перспектива
Квадратний корінь з двох може бути представлений у вигляді ланцюгового дробу:
Відповідні дроби даного ланцюгового дробу дають наближені значення, швидко сходяться до точного квадратного кореня з двох. Спосіб їх обчислення простий: якщо позначити попередній відповідний дріб , то подальший має вигляд . Швидкість збіжності тут менше, ніж у методу Ньютона, але обчислення набагато простіше. Випишемо декілька перших наближень:
Квадрат останнього наведеного дробу дорівнює (округлено) 2,000000177.
Remove ads
Розмір паперу
Квадратний корінь з двох є пропорцією формату паперу ISO 216. Співвідношення сторін таке, що при розрізанні аркуша навпіл, паралельно його короткій стороні, вийдуть два аркуша тієї ж пропорції. Це дозволяє нумерувати такі, найуживаніші формати паперу, одним числом, згідно з геометричним зменшенням площі листа (відповідно числу розрізів) — А0, А1, А2, А3, А4,…
Див. також
Примітки
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads