Топ питань
Часова шкала
Чат
Перспективи

Ірраціональне число

Числа, які неможливо записати звичайним дробом З Вікіпедії, вільної енциклопедії

Ірраціональне число
Remove ads
Remove ads

Ірраціональні числа (позначення для множини ) — це всі дійсні числа, що не є раціональними: , — тобто не можуть бути записані як відношення цілих чисел (, ), а лише нескінченними неперіодичними десятковими дробами.

Thumb
Математична константа пі (π) є ірраціональним числом.
Thumb
Число є ірраціональним числом.

Уперше І. ч. постали в геометрії під час вивчення довжин відрізків піфагорцями, які, як стверджує легенда[джерело?], виявили неспівмірність з одиницями вимірювання деяких геометричних величин. Оскільки це суперечило їхній філософії (цілком побудованій на натуральних числах), відкриття якнайсуворіше приховували, навіть покаравши на смерть одного зі своїх братів Гіппаса Метапонтського, який (за різними джерелами) чи то першим знайшов, чи то розголосив цей факт.

Remove ads

Відмінності записування дійсних чисел

Узагальнити
Перспектива

Десятковий дріб будь-якого раціонального числа має періодично повторювану частину (зокрема це можуть бути нулі, як у скінченних дробів і цілих чисел), н-д:

  • ,[1] що означає «нуль цілих і три в періоді» (довжина періоду — один), тобто повторюється нескінчену кількість разів;
  • , що означає «три цілих і сто сорок дві тисячі вісімсот п'ятдесят сім у періоді» (довжина періоду — шість), тобто повторюється нескінчену кількість разів;
  • , що означає «дві цілих, нуль сотих і сімдесят п'ять у періоді» (довжина періоду — два), тобто повторюється нескінчену кількість разів;
  • , скінченний дріб «дві цілих, п'ять десятих»,[2] тобто повторюється нескінчену кількість разів;
  • , ціле число «три еквівалентне двом цілим і дев'ять у періоді»,[3] тобто повторюється нескінчену кількість разів.

Періодичність дробу можна вважати критерієм приналежності числа до множини раціональних чисел.

Розкладання І. ч. у десятковий дріб не позначається такою періодичністю. Наприклад, відомо, що число пі — ірраціональне та навіть трансцендентне, тому, хоча в його десятковому записі окремі цифри та їх комбінації повторюються, не існує групи цифр, яка б нескінченно повторювалася, утворюючи період.

Інший спосіб записування додатних дійсних чисел: за допомогою ланцюгових дробів. Відмінність полягає в тому, що ланцюгові дроби раціональних чисел скінченні, а І. ч. — нескінченні, хоча для квадратичних ірраціональностей ланцюговий дріб періодичний.

Приклади

Квадратні корені

Квадратний корінь з двох — це перше число, ірраціональність якого було доведено. Іншим відомим ірраціональним числом є золотий перетин. Квадратні корені усіх натуральних чисел, які не є квадратними числами, є ірраціональними.

Приклади

 — скінченний;
 — з періодом довжини один;
 — з періодом довжини два;
(A001203 в енциклопедії цілих послідовностей [Архівовано 5 березня 2007 у Wayback Machine.]) — неперіодичний.
Remove ads

Філософське значення

Про існування неспівмірних відрізків знали вже древні математики: їм була відома, наприклад, неспівмірність діагоналі та сторони квадрата, що рівносильно ірраціональності числа (перше знайдене І. ч.).

Піфагорове твердження, що всі речі є числа, відображало метафізичні уявлення стародавніх греків про Всесвіт як місце гармонії, яку власне можна описати відношеннями натуральних чисел. Так поєднання двох звуків, відношення частот яких є раціональним числом, дає приємне для вуха звучання.

З'ясування того, що не є раціональним числом, призвело до глибокої кризи давньогрецької математики, яка полягала в усвідомлені факту існування математичних величин, які не можливо відобразити числами, а лише через геометричні побудови. Як наслідок — давньогрецька математика відмовилася від алгебраїчного підходу, на користь геометричного.

Remove ads

Властивості

Топологічні властивості

Remove ads

Див. також

Примітки

Loading content...

Література

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads