Топ питань
Часова шкала
Чат
Перспективи

Кільце Гензеля

З Вікіпедії, вільної енциклопедії

Remove ads

Кільцем Гензеля називається комутативне локальне кільце для якого виконується лема Гензеля. Цей клас кілець ввів японський математик Горо Азумайа[1], який назвав їх на честь Курта Гензеля.

Для кожного локального кільця можна отримати гензелеве кільце за допомогою процедури гензелізації. У комутативній алгебрі гензелізація часто замінює операцію поповнення, що відіграє важливу роль при локальному дослідженні об'єктів. В теорії етальних морфізмів і етальної топології гензелева R-алгебра розглядається як індуктивна границя етальних розширень кільця.

Remove ads

Означення

Узагальнити
Перспектива

Кільцем Гензеля називається комутативне локальне кільце R, для якого виконується лема Гензеля. Для локального кільця із максимальним ідеалом цю умову можна сформулювати так, що для будь-якого многочлена і простого розв'язку рівняння P(X) = 0 по модулю , тобто і існує , для якого і .

Кільце Гензеля можна характеризувати як кільце, над яким будь-яка скінченна алгебра є прямим добутком локальних кілець.

Кільце Гензеля із сепарабельним замкнутим полем лишків називається строго гензелевим через локальність його спектра в етальній топології схем.

Remove ads

Приклади

Remove ads

Властивості

Узагальнити
Перспектива

Гензелізація

Для будь-якого локального кільця R існує універсальна конструкція — локальна гензелева R-алгебра Rh, така що для будь-якої локальної гензелевої R-алгебри B існує єдиний гомоморфізм R-алгебр

Rh називається гензелізацією кільця R. Гензелізація задовольняє властивості:

Аналогічно конструкції побудови гензелевої R-алгебри Rh існує функтор строгої гензелевої R-алгебри Rsh.

Примітки

Див. також

Література

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads