Топ питань
Часова шкала
Чат
Перспективи

Модель Максвелла

реологічна модель пружнов'язкого тіла, утворена послідовним сполученням пружного і в'язкого елементів З Вікіпедії, вільної енциклопедії

Remove ads

Моде́ль Максве́лла (тіло Максвелла) реологічна модель пружнов'язкого тіла, утворена послідовним сполученням пружного і в'язкого елементів. Запропонована Д.Максвеллом 1867 року.

Thumb
Схематичне зображення моделі Максвелла

Якщо цю систему швидко навантажити, то в'язкий елемент не встигне зрушити з місця і буде поводити себе, як заморожений, а деформацію візьме на себе пружина — і модель буде поводити себе як пружне тіло. Навпаки, у разі повільного навантаження, наприклад, сталою силою, до деякої невеликої постійної деформації пружини додається в принципі необмежено зростаюча деформація в'язкого елемента, тобто модель поводить себе як пружна рідина, яку називають рідиною Максвелла (а також тілом або моделлю Максвелла). Ця рідина не описується законом в'язкості Ньютона і тому належить до неньютонівських рідин.

Remove ads

Математичний опис моделі

Узагальнити
Перспектива

Нехай ε1 — деформація пружного елементу, а ε2 — деформація в'язкого. У разі послідовного з'єднання напруження в кожному елементі σ однакове. Якщо бути точним, то однаковими, є зусилля, тому для простоти припускається, що перерізи елементів моделі є однаковими. Можна записати дві очевидні залежності:

,

де: E модуль Юнга; η динамічна в'язкість.

Звідси, враховуючи що:

,

звідки:

(рівняння Максвелла).

Для випадку релаксації напруження (ε = const) отримаємо:

;

інтегруючи від 0 до t і від σ0 до σ, отримаємо відомий закон релаксації Максвелла:

,

де  час релаксації (стала матеріалу при T = const, що має розмірність часу).

Remove ads

Застосування моделі

Ця модель якісно справедлива для в'язких матеріалів, що мають пружність (пружнов'язкі тіла) і добре описує повзучість багатьох матеріалів, наприклад, бетону та полімерів. Для точнішого опису повзучості лінійна залежність замінюється нелінійною, зберігаючи при цьому головне — послідовне сполучення елементів. Для твердих тіл із внутрішнім тертям (в'язкопружні тіла) модель Максвелла не описує повзучість, яка згасає. При релаксації напруження в елементах прямують до нуля, хоча в реальних твердих тілах цього не спостерігається. У цьому випадку застосовуються складніші моделі.

Remove ads

Див. також

Джерела

  • Рейнер М. Реология. Пер. с англ. — М.: Наука, 1965. — 224 с.
  • Шульман 3. П. Беседы о реофизике. — Минск: Наука и техника, 1976. — 96 с.
  • Виноградов Г. В. Реология полимеров. — М.: Химия, 1977. — 440 c.
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads