Топ питань
Часова шкала
Чат
Перспективи

Правило повного математичного сподівання

З Вікіпедії, вільної енциклопедії

Remove ads

В теорії ймовірностей твердження відоме як закон повного математичного сподівання[1], закон повторних сподівань[2], правило вежі[3], закон Адама чи теорема згладжування[4] стверджує, що якщо випадкова величина, з визначеним матсподіванням , а — довільна випадкова величина на тому ймовірнісному просторі.

тобто значення сподівання умовного матсподівання значення для певного дорівнює матсподіванню .

У спеціальному випадку, для - скінченного або зліченного розбиття простору елементарних подій, тоді

Remove ads

Приклад

Узагальнити
Перспектива

Припустимо, що дві фабрики постачають на ринок лампочки. Лампочки із заводу працюють в середньому 5000 годин, тоді як лампи заводу працюють в середньому впродовж 4000 годин. Відомо, що фабрика постачає 60% від загальної кількості наявних ламп. Яка очікувана тривалість часу роботи придбаної лампочки?

Застосовуючи закон повного матсподівання отримаємо:

де

  • — тривалість роботи лампочки;
  • — ймовірність, що куплена лампочка виготовлена на заводі X;
  • — ймовірність, що куплена лампочка виготовлена на заводі Y;
  • — очікувана тривалість роботи лампочки виготовленої на заводі X;
  • — очікувана тривалість роботи лампочки виготовленої на заводі Y.

Отже, очікувана тривалість роботи кожної придбаної лампочки дорівнює 4600 годин.

Remove ads

Доведення для скінченних і зліченних випадків

Узагальнити
Перспектива

Нехай випадкові величини та визначені на одному ймовірнісному просторі, припустимо скінченну чи зліченну множину скінченних значень. Припустимо що визначена, тобто . Якщо — подрібнення ймовірнісного простору , то

Доведення

Якщо ряд скінченний, то можемо змінити порядок сумування й попередній вираз запишеться

Якщо ж, з іншого боку, ряд нескінченний, то його збіжність не може бути умовною через припущення, що Ряд збіжний абсолютно якщо обидвоє, і - скінченні і розбіжний до нескінченності, якщо чи чи — нескінченне. В обидвох випадках порядок сумування можна змінити не змінюючи суми.

Remove ads

Доведення у загальному випадку

Узагальнити
Перспектива

Нехай  — ймовірнісний простір, з визначеними на ньому σ-алгебрами . Для випадкової величини на такому просторі, закон згладжування стверджує, що якщо - визначене, тобто , тоді

Доведення. Завдяки тому, що умовне матсподівання це похідна Радона – Нікодима, доведення закону згладжування зводиться до перевірки таких двох властивостей:

  • є -вимірною
  • для всіх

Перша з цих властивостей випливає з означення умовного матсподівання. Для доведення другого,

отже інтеграл визначений (не дорівнює ).

Друга властивість правильна, бо з випливає

Висновок. В особливому випадку, коли і , закон згладжування зводиться до

Remove ads

Доведення формули розбиття

Узагальнити
Перспектива

де - характеристична функція множини .

Якщо розбиття - скінченне, то, за властивістю лінійності, попередній вираз записується у вигляді

що й треба було показати.

Якщо ж розбиття - нескінченне, то застосовуючи теорему про мажоровану збіжність можемо показати

Справді, для кожного ,

Позаяк кожен елемент множини належить певному елементу подрібнення , легко перевірити що послідовність поточково збіжна до X. За припущенням у твердженні, . Застосовуючи теорему про мажоровану збіжність отримуємо бажане твердження.

Remove ads

Див. також

  • Основна теорема покеру[en] для одного практичного застосування.
  • Формула повної ймовірності
  • Закон повної дисперсії
  • Закон повної коваріації
  • Закон сукупної кумуляції
  • Розподіл добутку двох випадкових величин[en], див. підрозділ про сподівання (застосування Закону для доведення того, що сподівання добутку це добуток сподівань)

Джерела

  • Карташов М. В. Імовірність, процеси, статистика. — Київ : ВПЦ Київський університет, 2007. — 504 с.
  • Гнєденко Б. В. Курс теорії ймовірностей. — Київ : ВПЦ Київський університет, 2010. — 464 с.
  • Гихман И. И., Скороход А. В., Ядренко М. В. Теория вероятностей и математическая статистика. — Київ : Вища школа, 1988. — 436 с.(рос.)
  • Billingsley, Patrick (1995). Probability and measure. New York: John Wiley & Sons. ISBN 0-471-00710-2. (англ.) (Теорема 34.4)
  • Christopher Sims, "Notes on Random Variables, Expectations, Probability Densities, and Martingales", especially equations (16) through (18)
Remove ads

Примітки

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads