Топ питань
Часова шкала
Чат
Перспективи
Поточкова збіжність
З Вікіпедії, вільної енциклопедії
Remove ads
Поточкова збіжність — один з видів збіжності послідовності функцій, в якому кожній точці області визначення ставиться у відповідність границя послідовності значень функцій в цій точці.
Функція, визначена таким чином називається поточковою границею, при цьому кажуть що послідовність функцій збігається до граничної поточково.
Поняття поточкової збіжності природно переноситься на функціональні ряди.
Remove ads
Означення
Нехай — послідовність функцій
де Y — лінійний нормований простір. Тоді послідовність збігається поточково до
якщо
Remove ads
Властивості
- Якщо поточкова границя існує, то вона єдина.
- Якщо послідовність функцій збігається рівномірно, то вона збігається і поточково, причому їхні границі приймають однакове значення.
- Поточкова границя послідовності вимірних функцій — вимірна. Крім того, множина вимірних функцій — це найменша алгебра функцій замкнена відносно операції поточкової границі, що містить множину неперервних функцій.
- Поточкова границя послідовності неперервних функцій не може бути всюди розривна. Тому функція Діріхле не є поточковою границею послідовності неперервних функцій.
- Поточкова границя послідовності неперервних функцій може бути розривною. Наприклад,
Remove ads
Топологія
Не існує топології на множині функцій, такої що поточкова збіжність функцій еквівалентна збіжності в цій топології.
Доведемо це від супротивного. Дійсно, нехай така топологія існує. Розглянемо множину неперервних функцій і її замикання в цій топології. Це замикання містить всі поточкові границі неперервних функцій. Воно не містить функцію Діріхле, бо поточкова границя неперервних функцій не може бути всюди розривна. З іншого боку, з цих функцій можна утворити послідовність, яка збігається поточково до функції Діріхле. Це суперечить тому що замикання множини в топологічному просторі є замкненим.
Доведення завершене.
Поточкова збіжність у просторах оснащених мірою
У вимірних просторах вводиться поняття збіжності майже всюди — поточкова збіжність в усьому просторі, крім, можливо, множини міри 0. Теорема Єгорова стверджує, що з поточкової збіжності на множині скінченної міри випливає рівномірна збіжність на множині міри, що як завгодно мало відрізняється від міри всього простору.
Див. також
Джерела
- Григорій Михайлович Фіхтенгольц. Курс диференціального та інтегрального числення. — 2025. — 2391 с.(укр.)
- Банах С. Диференціальне та інтегральне числення = Rachunek różniczkowy i całkowy. — 2-е. — М. : Наука, 1966. — 436 с.(рос.)
- Березанський Ю. М., Ус Г. Ф., Шефтель З. Г. Функціональний аналіз : [укр.] = Functional Analysis, Vol. I, Kyiv : Institute of Mathematics, 2010. : [пер. з англ.] : підручник. — Л. : Видавець Чижиков І. Е., 2014. — С. 559. — (Університетська бібліотека). — ISBN 978-966-2645-12-5.
- Ляшко І.І., Ємельянов В.Ф., Боярчук О.К. Математичний аналіз. Частина 1. — К. : Вища школа, 1992. — 496 с. — ISBN 5-11-003757-4.(укр.)
- Дороговцев А. Я. Математичний аналіз. Частина 1. — К. : Либідь, 1993. — 320 с. — ISBN 5-325-00380-1.(укр.)
![]() |
Це незавершена стаття з математики. Ви можете допомогти проєкту, виправивши або дописавши її. |
Remove ads
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads