Топ питань
Часова шкала
Чат
Перспективи
Радикал (хімія)
хімічна структура З Вікіпедії, вільної енциклопедії
Remove ads
Радика́л (вільний радикал; від фр. radical та лат. radicalis — «корінний», «той, що має корінь»; від лат. radix, «корінь») в хімії — парамагнітна частинка (атоми або молекули) з неспареним електроном на зовнішній атомній або молекулярній орбіталі.

Загальна характеристика
Узагальнити
Перспектива
Радикали можуть бути нейтральними або нести позитивний чи негативний заряд. У залежності від характеру орбіталі, яку займає неспарений електрон, розрізняють π-радикали і σ-радикали. У залежності від природи центрального атому (атому з найбільшою спіновою густиною) розрізняють С·, О·, N· та інші атомоцентровані радикали.
Вільні радикали мають непарне число електронів й спін, рівний 1/2; бірадикали мають парне число електронів та спін, рівний 1.
Перший органічний вільний радикал, трифенілметиловий радикал був ідентифікований Мозесом Гомбергом в 1900 році в Мічиганському університеті.
Вільні радикали відіграють важливу роль у горінні, хімічних перетвореннях в атмосфері, полімеризації, хімії плазми, біохімічних та багатьох інших процесах. У біологічних системах вільнорадикальному окисненню можуть підлягати нуклеїнові кислоти, білки, ліпіди та інші речовини, серед цих реакцій особливо важливе значення має перекисне окиснення ліпідів[1]. Деякі вільні радикали, як от супероксид-аніон і моноксид азоту, у багатьох організмів регулюють певні процеси, наприклад зміну тонусу кровоносних судин. Вони також відіграють роль у проміжному метаболізмі різноманітних сполук. Ці радикали можуть бути посередниками у так званому «редокс сигналюванні».
Розрізняють: алкіліденамінильний, алкіліденаміноксильний, алкільний, амінільний, аміноксильний, аніон- , атомоцентрований, ацилоксильний, вердазильний, вільний, гарячий, діазенільний, імінильний радикал, іміноксильний, йон- , силільний, стабільний, сульфенільний, тропільний фосфоранільний радикал, π-радикал, σ-радикал, радикал-йон.
Радикальний центр (англ. radical centre) — атом (чи група атомів) у багатоатомному радикалі, на якому переважно локалізований неспарений електрон. Залежно від атому, на якому зосереджений неспарений електрон, радикали носять назву С-центрований, О-центрований тощо.
Атомоцентрований радикал (англ. atom centered radical) — термін, що використовується для розрізнення радикалів залежно від того, на якому атомі зосереджений неспарений електрон (тб. вказує на природу атома з найбільшою спіновою густиною), пр., C-, О-, N-центровані радикали.
Ацилоксильний радикал (англ. acyloxyl radical) — оксигенцентрований радикал, які містить ацильну групу, зв'язану з атомом О. Пр., RC(=O)O·, RC(=NR)O·, RS(=O)O·.
Remove ads
Вільні радикали у хімічних реакціях
Узагальнити
Перспектива
Вільні радикали можуть виникати під дією тепла, каталізаторів, ультрафіолетового та радіаційного випромінення, інших впливів на молекули. Реакція утворення радикалів називається гомоліз.
Характерна особливість вільних радикалів — висока хімічна активність, обумовлена наявністю вільних валентностей (неспарених електронів). Більшість вільних радикалів мають малу тривалість життя (на рівні декількох мс). Вільні радикали відіграють важливу роль у гетерогенному каталізі, ферментативних процесах у живих організмах, у реакціях швидкого окислення — горіння, у важливих проміжних процесах — крекінгу, піролізу, полімеризації, процесах, які включають механохімічну активацію та ін. Вільні радикали з кінетичною енергією, яка набагато перевищує певне середнє значення, притаманне для нього, називають гарячим радикалом.
Терміни «радикал» і «вільний радикал» іноді використовуються рівнозначно, проте радикал може бути зв'язаний за рахунок ван-дер-вальсівських або інших нековалентних зв'язків.
Органічна хімія вільних радикалів — це хімія парамагнітних парів, рідин, сипучих тіл, розплавів й розчинів[2].
На повітрі органічні речовини зазнають окиснюваних перетворень: понижується теплопровідність рідких й твердих палив, погіршуються характеристики змащувальних масел й гідравлічних рідин, падає міцність виробів з полімерів й пластмас, псуються медикаменти, косметичні засоби, вибухові речовини, жирвмісні корми й харчові продукти. За рациндифікації масла у ньоу накопичуються токсичні продукти окиснюючих реакцій: спирти, карбонільні сполуки, пероксиди, гідропероксиди, оксирани й ін.
Іміноксильні радикали використовуються в якості ефективних інгібіторів реакцій полімеризації, термо- й світлоокиснення різних органічних матеріалів, наприклад, для підвищення стійкості акрилонітрилу, вінілацетату, вінілденхлориду, стиролу, олігоетеракрилатів, фурфуролу, жирів, масел, каротинвмісних кормів. Довгоживучі радикали викоритстовуються для інтенсифікації хемічних процесів, підвищення селективності каталітичних систем й покращення якості при виробництві анаеробних герметиків, епоксидних смол, поліолефінів, метакрилової кислоти. Стабільні парамагнетики взастосовуються у біофізичних й молекулярно-біологічних дослідженнях в якості спінових міток й зондів, у судово-медичній експертизі, аналітичній хемії, для підвищення адгезії полімерних покриттів, у приладобудуванні й дефектоскопії твердих тіл.
Remove ads
Виявлення
Узагальнити
Перспектива
Вільні радикали виявляють завдяки їх парамагнітним властивостям. Для цього використовується метод електронно парамагнітного резонансу. Спектри ЕПР дозволяють не лише виявити вільні радикали, але й отримати інформацію про їхню будову й ступінь делокалізації неспареного електрона. Для цього використовують два параметри: g-чинник й константу надтонкого розщеплення. Перший з них є аналогом хемічного зсуву у спектроскопії ЯМР[3].
Протонний обмін між основою та кислотою описується рівнянням:
.
Необхідною умовою для застосування методу ЕПР для спостереження за ходом реакції є наявність магнітно-резонансних параметрів радикалу у формах та . У цьому випадку реакція повинна приводити до частотного обміну між відповідними компонентами спектрів ЕПР радикалі у формах та . Форма лінії сигналу ЕПР у випадку частотного обміну по двом полоенням, які відповідають та -формам радикалу, описується рівнянням:
де — стала; та — часи життя радикалу у формах та відповідно; — різниця частот відповідних ліній у спектрах ЕПР радикалів у формах та ; — часи поперечної релаксації радикалів та . Змінна пов'язана із «сталим» магнітним полем співвідношенням де — напруженість магнітного поля, яка відповідає центру сигналу ЕПР радикалу у формі . У відповідності з цим рівнянням реалізуються різні випадки обміну: швидкий (), повільний () та проміжний () у масштабі часу ЕПР. Незалежно від частоти обміну по спектрам ЕПР, можна визначити відношення Визначення часу життя можливе лише у випадку проміжного обміну. Знаючи можна визначити константу рівноваги:
У випадку, коли реакція описує обмін з протоном розчинника ( тобто сольватований протон, рівняння рівноваги пов'язує константу рівноваги із концентрацією протонів що відчиняє можливість використання радикалів в якості -зондів.
Величини визначають як кінетичні параметри реакції , а саме константи швидкостей :
Таким чином, у вказаних випадках аналіз форми сигналу ЕПР дозволяє отримати кількісну інформацію про термодинаміку й кінетику протонного обміну у радикалах[4].
Remove ads
Історичний термін
Історично термін «радикал» також використовувався для опису частин молекули, особливо коли вони залишаються незмінними під час реакцій, таке визначення все ще можна знайти у старих підручниках. Наприклад, метиловий спирт описувався як складова метилового і гідроксильного радикалів. Жоден з цих «радикалів» не був радикалом у сучасному хімічному сенсі, оскільки вони були постійно зв'язані і не мали неспарованих електронів. У мас-спектрометрії, проте, ці групи відділяються у вигляді радикалів під градом високоенергійних електронів та можуть спостерігаються як окремі частинки. Зараз для позначення частин більших молекул використовуються терміни «замісник» або «функціональна група».
Remove ads
У живих організмах
Узагальнити
Перспектива
Вільні радикали задіяні у ряді біологічних процесів, зокрема вони необхідні для внутрішньоклітинного знищення бактерій фагоцитами — гранулоцитами і макрофагами. Також ці частинки беруть участь у клітинному сигналюванні (так зване «редокс сигналювання»)[5].
Серед вільних радикалів похідних кисню у біологічних системах найважливішими є супероксид-аніон і гідроксильний радикал, обидва формуються із кисню у відновних умовах. Через високу реакційну здатність ці частинки можуть вступати у небажані взаємодії і шкодити організму. Надмірна концентрація вільних радикалів може призвести до пошкодження і смерті клітин, зокрема під час таких патологічних процесів як рак, інсульт, інфаркт міокарда, цукровий діабет та інші[6].
Вважається, що небажані взаємодії між вільними радикалами і ДНК і викликані ними мутації мутацій, які можуть порушувати проходження клітинного циклу, роблять внесок в утворення злоякісних пухлин[7].
Деякі ознаки старіння також пов'язані із радикалами, наприклад, під час розвитку атеросклерозу вони окиснюють холестерол до 7-кетохолестеролу.[8]. Також вони можуть бути задіяні розвитку хвороби Паркінсона, глухоти, викликаної старінням чи медичними препаратами, шизофренії, хвороби Альцгеймера[9]. Вільнорадикальна гіпотеза старіння стверджує, що саме ці частинки є основною причиною настання старості.
Класичний вільнорадикальний синдром — гемохроматоз (хвороба накопичення заліза) — зазвичай супроводжується набором розладів, пов'язаних із вільними радикалами — порушення руху, психоз, аномалії пігментації шкіри, глухота, артрит і цукровий діабет.
Оскільки, по-перше, вільні радикали необхідні для життя, а по-друге, вони утворюються як побічні продукти метаболізму кисню, в організмів виробився ряд механізмів, що дозволяють протидіяти вільнорадикальним ушкодженням. Це зокрема ферменти супероксиддисмутаза, каталаза, глутатіонпероксидаза і глутатіонредуктаза. Крім цього існує низка неферментних біологічних антиоксидантів: вітаміни A, C і E, поліфеноли, убіхінон, триптофан, фенілаланін, церулоплазмін, трансферин, гаптоглобін[1]. Також існують дані про роль білірубіну і сечової кислоти у процесах знешкодження вільних радикалів[10].
Remove ads
Космохемія
Стабілізовані твердою метрицею радикали зустрічаються у метеоритах, природних мінералах й каустобіолітах. Значення для астронавтики й астрофізики мають розсіяні у міжзірковому просторі «короткоживучі» радикали: й ін., загальна щільність яких досягає г/см3. Дослідження комет вказують на присутність у них радикалів: Судячи по спектрам полярного сяйва, атмосфера землі містить Максимальна концентрація атомів кисню (бірадикал) зафіксована на висоті 105 км над рівнем моря ( на см3). У атмосфері сонця й більш холодних зірок виявлені й інші вільні радикали. Вважають, що мінливе забарвлення поверхні Юпітера обумовлена присутністю у його атмосфері стабілізованих радикалів[11].
Remove ads
Див. також
Примітки
Література
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads