Топ питань
Часова шкала
Чат
Перспективи
Теорема Колмогорова
З Вікіпедії, вільної енциклопедії
Remove ads
Теорема Колмогорова в математичній статистиці уточнює швидкість збіжності вибіркової функції розподілу до її теоретичного аналога. Ця ж теорема служить основою нейронних мережа.
Формулювання
Нехай Х1,…,Хn — нескінченна вибірка з розподілу, що задається безперервною функцією розподілу F. Нехай F' — вибіркова функція розподілу, побудована на перших n елементах вибірки. Тоді
з розподілу при n слідує до нескінченності, де К К — випадкова величина, що має розподіл Колмогорова.
Remove ads
Зауваження
Неформально кажуть, що швидкість збіжності вибіркової функції розподілу до її теоретичного аналога має порядок 1/.
Див. також
Джерела
- Карташов М. В. Імовірність, процеси, статистика. — Київ : ВПЦ Київський університет, 2007. — 504 с.
- Гнєденко Б. В. Курс теорії ймовірностей. — Київ : ВПЦ Київський університет, 2010. — 464 с.
- Гихман И. И., Скороход А. В., Ядренко М. В. Теория вероятностей и математическая статистика. — Київ : Вища школа, 1988. — 436 с.(рос.)
- Скороход А. В. Лекції з теорії випадкових процесів. — Київ : Либідь, 1990. — 168 с. — ISBN 5-11-001701-8.
Remove ads
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads