Топ питань
Часова шкала
Чат
Перспективи

Шарування корозмірності 1

З Вікіпедії, вільної енциклопедії

Remove ads

Шарування корозмірності 1 — це розбиття многовиду на підмножини, що неперетинаються, які локально виглядають як поверхні рівня гладких регулярних функцій.

Означення

На -вимірному многовиді задано шарування корозмірності 1, якщо наділене розбиттям на лінійно зв'язні підмножини з наступною властивістю: в околі будь-якої точки з знайдеться локальна система координат , в якій зв'язні компоненти множини складаються з розв'язків .

Множини називаються шарами шарування,  — його тотальним простором.

Шари мають топологію, в основі якої є зв'язні компоненти перетину шару з відкритими підмножинами тотального многовиду . Стосовно цієї топології шар є гладким многовидом, і його включення в тотальний многовид є вкладенням в слабкому сенсі.

Remove ads
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads