自然對數者(Natural logarithm),對數也,以歐拉數爲底,底計有: 註︰蓋當今數學之事,誠難僅以文述,而無符號,故凡數學之文,咸有漢字、拉丁字相易之事,以合文言、數學,則無論文理之人,皆可明之也。 e = lim n → ∞ ( 1 + 1 n ) n = ∑ n = 0 ∞ 1 n ! = 2.7182818284...... {\displaystyle e=\lim _{n\to \infty }\left(1+{\frac {1}{n}}\right)^{n}=\sum _{n=0}^{\infty }{\frac {1}{n!}}=2.7182818284......} Remove ads表 More information n, ln(n)約數 ... n ln(n)約數 整數數列線上大全 2 0.693147 180559 945309 417232 1214 A002162 3 1.098612 288668 109691 395245 2369 A002391 4 1.386294 361119 890618 834464 2429 A016627 5 1.609437 912434 100374 600759 3332 A016628 6 1.791759 469228 055000 812477 3583 A016629 7 1.945910 149055 313305 105352 7434 A016630 8 2.079441 541679 835928 251696 3643 A016631 9 2.197224 577336 219382 790490 4738 A016632 10 2.302585 092994 045684 017991 4546 A002392 Close Remove ads式 ln ( a ) + ln ( b ) = ln ( a b ) {\displaystyle \ln(a)+\ln(b)=\ln(ab)} 反之亦然 ln ( a ) − l n ( b ) = ln ( a b ) {\displaystyle \ln(a)-ln(b)=\ln({\frac {a}{b}})} ln 1 = 0 {\displaystyle \ln 1=0} ln e = 1 {\displaystyle \ln e=1} ln a n = n ln a {\displaystyle \ln a^{n}=n\ln a} log a b = ln b ln a {\displaystyle \log _{a}b={\frac {\ln b}{\ln a}}} lg n = ln ( n ) l n 10 {\displaystyle \lg n={\frac {\ln(n)}{ln10}}} a n = e n ln a {\displaystyle a^{n}=e^{n\ln a}} ln n = ln n n − 1 + ln ( n − 1 ) = 2 ∑ k = 1 ∞ [ 1 2 k − 1 ( 1 2 n − 1 ) 2 k − 1 ] + ln ( n − 1 ) {\displaystyle \ln n=\ln {\frac {n}{n-1}}+\ln {(n-1)}=2\sum _{k=1}^{\infty }[{\frac {1}{2k-1}}({\frac {1}{2n-1}})^{2k-1}]+\ln(n-1)} Remove ads對數運算 由指數函數可知 log a N = x | a x = N {\displaystyle \log _{a}{N}=x|_{a^{x}=N}} log a 1 = 0 {\displaystyle \log _{a}1=0} log a a = 1 {\displaystyle \log _{a}{a}=1} a log a N = N {\displaystyle a^{\log _{a}{N}}=N} 其對數恒等式也,其至用也,可證對數運算,見其下 log a M + log a N = log a ( M N ) {\displaystyle \log _{a}{M}+\log _{a}{N}=\log _{a}{(MN)}} 設 m = log a M , n = log a N {\displaystyle m=\log _{a}{M},n=\log _{a}{N}} ,則 a m ⋅ a n = a m + n {\displaystyle a^{m}\cdot a^{n}=a^{m+n}} 由對數恒等式可知 M N = a m + n {\displaystyle MN=a^{m+n}} m + n = log a ( M N ) {\displaystyle m+n=\log _{a}{(MN)}} 即 log a M + log a N = log a ( M N ) {\displaystyle \log _{a}{M}+\log _{a}{N}=\log _{a}{(MN)}} log a M − log a N = log a M N {\displaystyle \log _{a}{M}-\log _{a}{N}=\log _{a}{\frac {M}{N}}} 設 m = log a M , n = log a N {\displaystyle m=\log _{a}{M},n=\log _{a}{N}} ,則 a m ÷ a n = a m − n {\displaystyle a^{m}\div a^{n}=a^{m-n}} 由對數恒等式可知 M N = a m − n {\displaystyle {\frac {M}{N}}=a^{m-n}} m − n = log a M N {\displaystyle m-n=\log _{a}{\frac {M}{N}}} 即 log a M − log a N = log a M N {\displaystyle \log _{a}{M}-\log _{a}{N}=\log _{a}{\frac {M}{N}}} 其亦有其推論 log a N m = m log a N {\displaystyle \log _{a}{N^{m}}=m\log _{a}{N}} 對數之易底公式 log a b = log c b log c a {\displaystyle \log _{a}{b}={\frac {\log _{c}{b}}{\log _{c}{a}}}} 證:令 log a b = m {\displaystyle \log _{a}{b}=m} ,则 a m = b {\displaystyle a^{m}=b} log c b = log c a m = m log c a {\displaystyle \log _{c}{b}=\log _{c}{a^{m}}=m\log _{c}{a}} 則 m = log a b = log c b log c a = log c a m log c a = m log c a log c a = m {\displaystyle m=\log _{a}{b}={\frac {\log _{c}{b}}{\log _{c}{a}}}={\frac {\log _{c}{a^{m}}}{\log _{c}{a}}}={\frac {m\log _{c}{a}}{\log _{c}{a}}}=m} 故 log a b = log c b log c a {\displaystyle \log _{a}{b}={\frac {\log _{c}{b}}{\log _{c}{a}}}} 推論 log m n = 1 log n m {\displaystyle \log _{m}{n}={\frac {1}{\log _{n}{m}}}} log a m b n = n m log a b {\displaystyle \log _{a^{m}}{b^{n}}={\frac {n}{m}}\log _{a}{b}} e n = 10 n ln 10 {\displaystyle e^{n}=10^{\frac {n}{\ln 10}}} 對數製表公式之證明 求證 ln 1 = 0 , ln n = ln n n − 1 + ln ( n − 1 ) = 2 ∑ k = 1 ∞ [ 1 2 k − 1 ( 1 2 n − 1 ) 2 k − 1 ] + ln ( n − 1 ) {\displaystyle \ln 1=0,\ln n=\ln {\frac {n}{n-1}}+\ln {(n-1)}=2\sum _{k=1}^{\infty }[{\frac {1}{2k-1}}({\frac {1}{2n-1}})^{2k-1}]+\ln(n-1)} 證明 ln ( 1 + x ) = x − x 2 2 + x 3 3 − x 4 4 + ⋯ {\displaystyle \ln(1+x)=x-{\frac {x^{2}}{2}}+{\frac {x^{3}}{3}}-{\frac {x^{4}}{4}}+\cdots } ln ( 1 − x ) = x − x 2 2 − x 3 3 − x 4 4 − ⋯ {\displaystyle \ln(1-x)=x-{\frac {x^{2}}{2}}-{\frac {x^{3}}{3}}-{\frac {x^{4}}{4}}-\cdots } arth x = 1 2 ln 1 + x 1 − x = x + 1 3 x 3 + 1 5 x 5 + ⋯ = ∑ n = 1 ∞ [ 1 2 n − 1 x 2 n − 1 ] = ∑ k = 1 ∞ [ 1 2 k − 1 x 2 k − 1 ] {\displaystyle \operatorname {arth} {x}={\frac {1}{2}}\ln {\frac {1+x}{1-x}}=x+{\frac {1}{3}}x^{3}+{\frac {1}{5}}x^{5}+\cdots =\sum _{n=1}^{\infty }\left[{\frac {1}{2n-1}}x^{2n-1}\right]=\sum _{k=1}^{\infty }\left[{\frac {1}{2k-1}}x^{2k-1}\right]} 令 1 + x 1 − x = n n − 1 {\displaystyle {\frac {1+x}{1-x}}={\frac {n}{n-1}}} ,則 ( n − 1 ) ( 1 + x ) = n ( 1 − x ) {\displaystyle (n-1)(1+x)=n(1-x)} x = 1 2 n − 1 {\displaystyle x={\frac {1}{2n-1}}} ln n n − 1 = 2 arth 1 2 n − 1 = 2 ∑ k = 1 ∞ [ 1 2 k − 1 ( 1 2 n − 1 ) 2 k − 1 ] {\displaystyle \ln {\frac {n}{n-1}}=2\operatorname {arth} {\frac {1}{2n-1}}=2\sum _{k=1}^{\infty }\left[{\frac {1}{2k-1}}\left({\frac {1}{2n-1}}\right)^{2k-1}\right]} 故原式得證 Remove adsLoading related searches...Wikiwand - on Seamless Wikipedia browsing. On steroids.Remove ads