这种模型可以用于描述水流中含稳定污染流,但只有一维信息的情况。它可以简化为一维问题并得到有价值的信息。
可对水中污染溶质富集的问题进行建模,这种问题由三部分组成:已知的扩散方程(
为常量),平流分量(即由速度场导致的系统在空间上的变化,表示为常量Ux),以及与纵向通道k旁流的相互作用。

其中C表示污染物的富集水平,下标N和M分别对应上一通道和下一通道。
克兰克-尼科尔森方法(i对应位置,j对应时间)将以上偏微分方程中的每个部分变换为






现在引入以下常量用于简化计算:



把 <1>, <2>, <3>, <4>, <5>, <6>, α, β 和 λ 代入 <0>. 把新时间项(j+1)代入到左边,当前时间项(j)代入到右边,将得到

第一个通道只能与下一个通道(M)有关系,因此表达式可以简化为:

同样地, 最后一个通道只与前一个通道(N)有关联,因此表达式可以简化为

为求解此线性方程组,需要知道边界条件在通道始端就已经给定了。
: 当前时间步某通道的初始条件
: 下一时间步某通道的初始条件
: 前一通道到当前时间步下某通道的初始条件
: 下一通道到当前时间步下某通道的初始条件
对于通道的末端最后一个节点,最方便的条件是是绝热近似,则

当且只当

时,这一条件才被满足。
以3个通道,5个节点为例,可以将线性系统问题表示为
![{\displaystyle {\begin{bmatrix}AA\end{bmatrix}}{\begin{bmatrix}C^{j+1}\end{bmatrix}}=[BB][C^{j}]+[d]}](//wikimedia.org/api/rest_v1/media/math/render/svg/8e2c0004cff53a3084cd60a0ff6963149780390b)
其中,

需要清楚的是,AA和BB是由四个不同子矩阵组成的矩阵,


其中上述矩阵的的矩阵元对应于下一个矩阵和额外的4x4零矩阵。请注意,矩阵AA和BB的大小为12x12



&

这里的d矢量用于保证边界条件成立。在此示例中为12x1的矢量。

为了找到任意时间下污染物的聚集情况,需要对以下方程进行迭代计算:
![{\displaystyle {\begin{bmatrix}C^{j+1}\end{bmatrix}}={\begin{bmatrix}AA^{-1}\end{bmatrix}}([BB][C^{j}]+[d])}](//wikimedia.org/api/rest_v1/media/math/render/svg/82b9594d4023d1133ab12023a4b8a801803b0c86)