热门问题
时间线
聊天
视角
反扭棱小星形十二面体
来自维基百科,自由的百科全书
Remove ads
在几何学中,反扭棱小星形十二面体是一种星形均匀多面体,索引为U60[5],是中逆五角六十面体的对偶多面体[7],并且与扭棱小星形十二面体拓朴同构[8]。
Remove ads
性质
反扭棱小星形十二面体共由84个面、150条边和60个顶点组成[5],欧拉示性数为-6[3]。在其84个面中,有60个正三角形面、12个正五边形面和12个正五角星面[9]其60个顶点每个顶点都是1个正十角星、1个五角星和3个三角形的公共顶点,并且这些面在顶都周围皆是依照三角形、反向相接的五角星、三角形、三角形、五边形和三角形的顺序排列,在顶点图中可以用(3,5⁄3,3,3,5)[5][10]、(5⁄3,3,3,5,3)[1][3]或(5.3.5⁄3.3.3)[11]来表示。
反扭棱小星形十二面体在考克斯特—迪肯符号中可以表示为[1][2],在施莱夫利符号中可以表示为sr{5⁄3,5},在威佐夫记号中可以表示为| 5⁄3 2 5
[3][4][5]或| 2 5⁄3 5[6]:180[7]。
反扭棱小星形十二面体有三种二面角,分别为五边形面和三角形面的二面角、三角形面和三角形面的二面角以及五角星面和三角形面的二面角。其中五边形面和三角形面的二面角的值为多项式4100625 x8-32805000 x7+95863500 x6-119799000 x5+68311350 x4-20763000 x3+7189740 x2-2234280 x+201601之正实根(约为0.132650687)的平方根(约为0.36421242)的反余弦值,约为68.640878254度[12];三角形面和三角形面的二面角的值为多项式6561 x4-20412 x3+30942 x2-20556 x+4489之正实根(约为0.4216231174)的负平方根的反余弦值,约为130.490738467度[12];五角星面和三角形面的二面角的值为多项式4100625 x8-32805000 x7+95863500 x6-119799000 x5+68311350 x4-20763000 x3+7189740 x2-2234280 x+201601之正实根(约为0.9627736877)的平方根(约为0.9812103178)的反余弦值,约为11.124480107度。[12]
若反扭棱小星形十二面体的边常为单位长,则其外接球半径为多项式之较小正实根(约为0.72527)的平方根[12],约为0.8516302[13]。
Remove ads
相关多面体
两个反扭棱小星形十二面体可以复合成均匀复合体,称为二复合反扭棱小星形十二面体[14]。
![]() 二复合反扭棱小星形十二面体 |
参见
- 均匀多面体列表
- 扭棱小星形十二面体
参考文献
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads