热门问题
时间线
聊天
视角

塞迈雷迪·安德烈

匈牙利数学家 来自维基百科,自由的百科全书

塞迈雷迪·安德烈
Remove ads

塞迈雷迪·安德烈匈牙利语Szemerédi Endre,1940年8月21日)是一名匈牙利数学家,他主要的研究领域为组合数学理论计算机科学。他自从1986年以来一旦担任美国罗格斯大学计算机科学教授。

事实速览 塞迈雷迪·安德烈Szemerédi Endre, 出生 ...
Remove ads

生平

他生于布达佩斯,先后毕业于匈牙利的罗兰大学与俄罗斯的莫斯科国立大学。他的博士导师为伊斯拉埃尔·盖尔范德

研究与成就

塞迈雷迪在离散数学理论计算机科学算术组合英语Arithmetic combinatorics组合几何方面总共发表了超过200篇学术论文。其中,在1975年,他证明了艾狄胥·帕尔图兰·帕尔的著名猜想:若一个正整数序列有正的上密度,则具有任意长的等差数列。这条定理现在以他为名,称为塞迈雷迪定理。证明过程当中,他引入了塞迈雷迪正则性引理。引理对于图的性质检验英语property testing图极限理论有重要应用。

得名自塞迈雷迪的还有重合几何塞迈雷迪-特罗特定理图论豪伊瑙尔-塞迈雷迪定理英语Hajnal–Szemerédi theorem鲁绍-塞迈雷迪问题英语Ruzsa–Szemerédi problem奥伊陶伊·米克洛什英语Miklós Ajtai和塞迈雷迪证明了拐角定理英语corners theorem,是迈向塞迈雷迪定理高维推广的重要一步。 塞迈雷迪与奥伊陶伊和科姆洛什·亚诺什英语János Komlós合作,证明了拉姆齐数R(3,t)的上界ct2/log t,并构造了深度最优的排序网络英语Sorting network。此外,塞迈雷迪与奥伊陶伊、瓦茨拉夫·赫瓦塔尔英语Václav Chvátal蒙提·纽邦英语Monty Newborn合作证明了交叉数不等式,即若一幅恰有n个顶点和m条边,且m > 4n,则将其画在平面上时,必有至少m3 / 64n2交叉

Remove ads

荣誉

1987年他成为匈牙利科学院院士;2010年成为美国国家科学院院士。他也是普林斯顿高等研究院的成员。

2010年6月,他被布拉格查理大学授予荣誉博士学位[1]

2012年3月21日,他获得挪威科学与文学院授予的阿贝尔奖,“以表彰其在离散数学理论计算机科学方面的杰出贡献,以及对堆垒数论遍历理论产生的深远影响。”[2][3]

参考资料

Loading content...

外部链接

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads