热门问题
时间线
聊天
视角

对位证明法

来自维基百科,自由的百科全书

Remove ads

对位证明法[1](英语:proof by contrapositive,又或者proof by negation),或称否定证明法逆否命题法[2],是逻辑数学的其中一个证明方法。其与反证法相似,但是是不同的概念。根据逻辑,“”等于“”,即取其逆否命题[3]

需要注意,对位证明法与反证法不同。

定义

给予给予初始实质条件命题“若P,则Q”:,对位证明法证明其逻辑等价的逆否命题“若非Q,则非P”:的真值。

逻辑上,对立证明法的可用性可以以比较逆否命题和原命题的真值表证明,即证明的真值完全一样:

更多信息 , ...
Remove ads

例子

  • “我的妈妈是女人。”需要证明的逆否命题是“不是女人就不是我的妈妈。”
  • “若是单数,则是双数。”需要证明的逆否命题是“若不是双数,则不是单数。”

反证法与对立证明的分别

反证法:假设 正确,,发现 不对,于是证明 正确。

否定证明:证明 正确,于是转换证明 正确。

证明例子

证明“假设 是双数,则 都会是双数。”

证明:

逆否命题:“假设 不是双数,则 也不是双数。”

换句话讲,即系“假设 是单数,则 也是单数。”

因为 是单数,所以 是整数。

因为 是整数,所以 是单数。

Remove ads

集合论例子

如果 都是set),而他们符合 。证明如果 ,则

证明

如果用直接证明,会很麻烦。但是,如果利用对立证明,即假设 则会简单得多。

因为 ,而 ,所以

这样 一定成立。

Remove ads

更多例子

以下命题都可以用对立证明证真:

  • 假设 都是自然数。如果 单数,则 都是单数。
  • 假设 都是实数。如果 无理数,则 或者 是无理数。
Remove ads

参见

参考

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads