热门问题
时间线
聊天
视角
扭歪多面体
来自维基百科,自由的百科全书
Remove ads
在几何学中,扭歪[1][2]多面体(英语:Skew polyhedron)是指顶点、边或面并非全部位于同一个三维空间中的多面体,即扭歪多边形的高一维类比,因此其无法找到一个唯一的内部区域以及其体积。
正扭歪多面体代表每个面全等、每条边等长、每个角都相等的扭歪多面体,是一系列可能具有非平面的面或顶点图。考克斯特的研究着重于具有扭歪顶点图新的四维多面体,后期多由布兰科·格林鲍姆研究有扭歪面的形状[4]。
历史
关于考克斯特,1926年时,约翰·弗林德斯·皮特里将扭歪多边形(非平面多边形)的概念广义化。
考克斯特针对这种图提出一个施莱夫利符号的扩展符号 {l,m|n} ,其中以{l,m}表示其顶点:每个顶点都是m个l边形的公共顶点。他们的顶点图是扭歪多边形,以锯齿的形式存在于两个面中。
能表示为{l,m|n}的正扭歪多面体存在以下等式:
第一系列的{l,m|n}正扭歪多面体与五个正多面体和一个星形正多面体相关:
Remove ads
四维的正扭歪多面体
考克斯特在他的论文《三维和四维空间的正扭歪多面体及其类似物》[5]中列出了较多的一系列扭歪多面体。
Remove ads
参见
参考文献
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads