热门问题
时间线
聊天
视角

星形正多面体

来自维基百科,自由的百科全书

Remove ads

星形正多面体开普勒-庞索特多面体)是一类非凸多面体,共有四个。它们的表面均为正多边形星形正多边形,且每个顶点都有相同数目的连接。

更多信息 , ...
Remove ads

性质

皮特里多边形是指两个连续边都属于多面体的一个面,但三边不属多面体的面的不共面多边形哈罗德·斯科特·麦克唐纳·考克斯特证明了若正多面体的皮特里多边形有边,则有

除了均为正整数时,有5组解,对应5个正多面体。当为正有理数时,有多4组解,分别对应4个开普勒-庞索特多面体。

Remove ads

历史

  • 14世纪Paolo Uccello的画作出现了小星形十二面体。
  • 15世纪Wenzel Jamnitzer发现小星形十二面体和大星形十二面体。
  • 1619年开普勒重新发现了小星形十二面体和大星形十二面体,并将它们和正多面体连系起来。
  • 1809年路易斯·庞索发现了大十二面体和大二十面体。因此这些多面体以开普勒和庞索命名。
  • 1859年阿瑟·凯莱敲定了这些形状的名字。[1]

参见

参考文献

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads