热门问题
时间线
聊天
视角
星形菱形三十面体
来自维基百科,自由的百科全书
Remove ads
在几何学中,星形菱形三十面体是指菱形三十面体的星形化体,即把菱形三十面体的面和边沿伸直到向外相交成星形的立体。温尼尔在他的书《多面体模型》中列出许多星形多面体模型,其中也收录了一些星形菱形三十面体[1],例如内侧菱形三十面体[2][3]。
历史
星形菱形三十面体是一种多面体类型,属于此类的多面体数量非常庞大。埃德(Ede)在1958年时列举了13种基本的星形菱形三十面体类型[4]。鲍莱(Pawley)在1973年时提出了一些规则以令星形菱形三十面体可以完全被枚举[5]。
这些多面体种类繁多,大多都并未被观察及描绘,因此大多数并未命名。梅塞尔(Messer)在1995年描述了其中227个星形化体[6](含原像菱形三十面体在内,即1种凸多面体和226种星形多面体[7][8])。
种类
菱形三十面体透过全部匹配能产生227种星形菱形三十面体[9],其中包括了115个镜像不变的立体和112个具有手性镜像的立体;透过米勒的规则[10] 可以产生833098种星形菱形三十面体,其中包括了 358959个镜像不变的立体和 84748139种具有手性镜像的立体 358[9]。
已命名的星形菱形三十面体十分少,其命名的原因多半与星形菱形三十面体无关,而是因为其他研究的同时刚好研究的立体属于星形菱形三十面体,例如五复合立方体虽是一种星形菱形三十面体[11],但其因为是立方体复合体的相关研究而得名[12]。

第一星形菱形三十面体,又称黄金一百二十面体,是菱形三十面体星形化的第一种形式,其对应形状转化为间单多面体(即去除自相交面隐没于立体内部的面)后所形成的立体共由120个面、62个顶点和180条边组成,且五种帕雷托立体皆可以共用顶点地嵌入这个立体中。[13]
黄金一百二十面体的顶点坐标都是由以下集合的元素组成[13]:
- {−φ³, −φ², −φ, 0, φ, φ², φ³}
其中,φ为黄金比例。
黄金一百二十面体的62个顶点,其中20个是来自一个正十二面体(或是为五个正四面体以两种方式重和的五复合正四面体)、5x6=30个来自5个正八面体和12个来自一个正二十面体。[13]
用途
部分星形菱形三十面体被一些数学学者认为是具代表性的立体,用于一些与几何学相关著作的封面或标志,例如大菱形三十面体[16][15]和菱形六十面体[i][17]。前者被用于多面体领域著名著作《正多胞形》的封面上[16][15],后者为Wolfram Alpha的标志。[17]
参见
参考文献
外部链接
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads