Remove ads正弦定理是三角学中的一个定理。它指出:对于任意 △ A B C {\displaystyle \triangle ABC} , a {\displaystyle a} 、 b {\displaystyle b} 、 c {\displaystyle c} 分别为 ∠ A {\displaystyle \angle A} 、 ∠ B {\displaystyle \angle B} 、 ∠ C {\displaystyle \angle C} 的对边, R {\displaystyle R} 为 △ A B C {\displaystyle \triangle ABC} 的外接圆半径,则有 a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R {\displaystyle {\frac {a}{\sin \angle A}}={\frac {b}{\sin \angle B}}={\frac {c}{\sin \angle C}}=2R} Remove ads证明 法一 做一个边长为 a {\displaystyle a} , b {\displaystyle b} , c {\displaystyle c} 的三角形,对应角分别是 A {\displaystyle A} , B {\displaystyle B} , C {\displaystyle C} 。从角 C {\displaystyle C} 向 c {\displaystyle c} 边做垂线,得到一个长度为h的垂线和两个直角三角形。 显然: sin A = h b {\displaystyle \sin A={\frac {h}{b}}} 且: sin B = h a {\displaystyle \;\sin B={\frac {h}{a}}} 故: h = b sin A = a sin B {\displaystyle h=b\,\sin A=a\,\sin B} 故: sin A a = sin B b {\displaystyle {\frac {\sin A}{a}}={\frac {\sin B}{b}}} 同理可证: sin B b = sin C c {\displaystyle {\frac {\sin B}{b}}={\frac {\sin C}{c}}} Remove ads法二 作 △ A B C {\displaystyle \triangle ABC} 的外接圆,设半径为 R {\displaystyle R} , B C = a {\displaystyle BC=a} 角A为锐角时 由于 ∠ A {\displaystyle \angle A} 与 ∠ D {\displaystyle \angle D} 所对的弧都为 B C {\displaystyle BC} ,根据圆周角定理可了解到 ∠ A = ∠ D {\displaystyle \angle {\rm {A=\angle D}}} 由于 B D {\displaystyle BD} 为外接圆直径, B D = 2 R , ∠ B C D = π 2 r a d {\displaystyle {\rm {BD}}=2R,\ \angle {\rm {BCD}}={\pi \over 2}rad} 所以 sin ∠ D = a 2 R {\displaystyle \sin \angle D={a \over 2R}} sin ∠ A = a 2 R {\displaystyle \sin \angle A={a \over 2R}} a sin ∠ A = 2 R {\displaystyle {a \over \sin \angle A}=2R} Remove ads角A为直角时 因为 B C = a = 2 R {\displaystyle BC=a=2R} ,可以得到 sin ∠ A = sin π 2 = 1 {\displaystyle \sin \angle A=\sin {\pi \over 2}=1} 所以可以证明 a sin ∠ A = 2 R {\displaystyle {a \over \sin \angle A}=2R} Remove ads角A为钝角时 线段 B D {\displaystyle BD} 是圆的直径 根据圆内接四边形对角互补的性质 ∠ D = π − ∠ B A C {\displaystyle \angle {\rm {D={\pi }-\angle BAC}}} 所以 sin ∠ B A C = sin ∠ D {\displaystyle \qquad \sin \angle BAC=\sin \angle D} 因为 B D {\displaystyle BD} 为外接圆的直径 B D = 2 R {\displaystyle BD=2R} 。根据正弦定义 sin ∠ B A C = sin ∠ D = a 2 R {\displaystyle {\sin \angle BAC}={\sin \angle D}={a \over 2R}} 变形可得 a sin ∠ B A C = 2 R {\displaystyle {a \over \sin \angle BAC}=2R} 根据以上的证明方法可以证明得到得到三角形的一条边与其对角的正弦值的比等于外接圆的直径,即 a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R {\displaystyle {\frac {a}{\sin \angle A}}={\frac {b}{\sin \angle B}}={\frac {c}{\sin \angle C}}=2R} Remove ads运用 三面角正弦定理 若三面角的三个面角分别为 α {\displaystyle \alpha } 、 β {\displaystyle \beta } 、 γ {\displaystyle \gamma } ,它们所对的二面角分别为 A {\displaystyle A} 、 B {\displaystyle B} 、 C {\displaystyle C} ,则 sin α sin A = sin β sin B = sin γ sin C {\displaystyle {\frac {\sin \alpha }{\sin A}}={\frac {\sin \beta }{\sin B}}={\frac {\sin \gamma }{\sin C}}} [1] Remove ads多边形的正弦关系 O A sin ∠ O B A = O B sin ∠ O A B , O B sin ∠ O C B = O C sin ∠ O B C , O C sin ∠ O D C = O D sin ∠ O C D , O D sin ∠ O E D = O E sin ∠ O D E , O E sin ∠ O A E = O A sin ∠ O E A {\displaystyle {\frac {OA}{\sin \angle OBA}}={\frac {OB}{\sin \angle OAB}},{\frac {OB}{\sin \angle OCB}}={\frac {OC}{\sin \angle OBC}},{\frac {OC}{\sin \angle ODC}}={\frac {OD}{\sin \angle OCD}},{\frac {OD}{\sin \angle OED}}={\frac {OE}{\sin \angle ODE}},{\frac {OE}{\sin \angle OAE}}={\frac {OA}{\sin \angle OEA}}} sin ∠ O A B sin ∠ O B C sin ∠ O C D sin ∠ O D E sin ∠ O E A sin ∠ O B A sin ∠ O C B sin ∠ O D C sin ∠ O E D sin ∠ O A E = O B ⋅ O C ⋅ O D ⋅ O E ⋅ O A O A ⋅ O B ⋅ O C ⋅ O D ⋅ O E = 1 {\displaystyle {\frac {\sin \angle OAB\sin \angle OBC\sin \angle OCD\sin \angle ODE\sin \angle OEA}{\sin \angle OBA\sin \angle OCB\sin \angle ODC\sin \angle OED\sin \angle OAE}}={\frac {OB\cdot OC\cdot OD\cdot OE\cdot OA}{OA\cdot OB\cdot OC\cdot OD\cdot OE}}=1} sin ∠ O A B sin ∠ O B C sin ∠ O C D sin ∠ O D E sin ∠ O E A = sin ∠ O B A sin ∠ O C B sin ∠ O D C sin ∠ O E D sin ∠ O A E {\displaystyle \sin \angle OAB\sin \angle OBC\sin \angle OCD\sin \angle ODE\sin \angle OEA=\sin \angle OBA\sin \angle OCB\sin \angle ODC\sin \angle OED\sin \angle OAE} Remove ads外部链接Loading content...参阅Loading content...Loading related searches...Wikiwand - on Seamless Wikipedia browsing. On steroids.Remove ads