Remove ads海伦公式(英语:Heron's formula或Hero's formula),又译希罗公式[1]。由古希腊数学家亚历山大港的海伦发现,并在其于公元60年所著的《Metrica》中载有数学证明,原理是利用三角形的三条边长求取三角形面积。亦有认为更早的阿基米德已经了解这条公式,因为《Metrica》是一部古代数学知识的结集,该公式的发现时间很有可能先于海伦的著作。[2] 假设有一个三角形,边长分别为 a , b , c {\displaystyle a,b,c} ,三角形的面积 A {\displaystyle A} 可由以下公式求得: A = s ( s − a ) ( s − b ) ( s − c ) {\displaystyle A={\sqrt {s(s-a)(s-b)(s-c)}}} ,其中 s = a + b + c 2 {\displaystyle s={\frac {a+b+c}{2}}} 中国南宋末年数学家秦九韶发现或知道等价的公式,其著作《数书九章》卷五第二题即三斜求积。“问沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里,里法三百步,欲知为田几何?”答曰:“三百十五顷.”其术文是:“以小斜幂并大斜幂,减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂,减上,余四约之,为实,一为从隅,开平方,得积。”若以大斜记为 a {\displaystyle a} ,中斜记为 b {\displaystyle b} ,小斜记为 c {\displaystyle c} ,秦九韶的方法相当于下面的一般公式: A = 1 4 [ a 2 c 2 − ( a 2 + c 2 − b 2 2 ) 2 ] {\displaystyle A={\sqrt {{\frac {1}{4}}\left[a^{2}c^{2}-\left({\frac {a^{2}+c^{2}-b^{2}}{2}}\right)^{2}\right]}}} ,其中 a ≥ b ≥ c {\displaystyle a\geq b\geq c} 像其他中国古代的数学家一样,他的方法没有证明。根据现代数学家吴文俊的研究,秦九韶公式可由出入相补原理得出。 由于任何 n {\displaystyle n} 边的多边形都可以分割成 n − 2 {\displaystyle n-2} 个三角形,所以海伦公式可以用作求多边形面积的公式。比如说测量土地的面积的时候,不用测三角形的高,只需测两点间的距离,就可以方便地导出答案。 Remove ads证明 利用三角公式和代数式变形来证明 与海伦在他的著作《Metrica》中的原始证明不同,在此我们用三角公式和公式变形来证明。设三角形的三边 a , b , c {\displaystyle a,b,c} 的对角分别为 A , B , C {\displaystyle A,B,C} ,则余弦定理为 cos C = a 2 + b 2 − c 2 2 a b {\displaystyle \cos C={\frac {a^{2}+b^{2}-c^{2}}{2ab}}} 利用和平方、差平方、平方差等公式,从而有 sin C = 1 − cos 2 C = ( 1 + cos C ) ( 1 − cos C ) = ( 1 + a 2 + b 2 − c 2 2 a b ) ( 1 − a 2 + b 2 − c 2 2 a b ) = ( 2 a b + ( a 2 + b 2 − c 2 ) 2 a b ) ( 2 a b − ( a 2 + b 2 − c 2 ) 2 a b ) = ( ( 2 a b + a 2 + b 2 ) − c 2 2 a b ) ( c 2 − ( a 2 + b 2 − 2 a b ) 2 a b ) = [ ( a + b ) 2 − c 2 2 a b ] [ c 2 − ( a − b ) 2 2 a b ] = ( a + b + c ) ( a + b − c ) ( c + a − b ) ( c − a + b ) 2 a b = ( 2 s ) ( 2 s − 2 c ) ( 2 s − 2 b ) ( 2 s − 2 a ) 2 a b = 2 a b s ( s − c ) ( s − b ) ( s − a ) {\displaystyle {\begin{aligned}\sin C&={\sqrt {1-\cos ^{2}C}}\\&={\sqrt {(1+\cos C)(1-\cos C)}}\\&={\sqrt {\left(1+{\frac {a^{2}+b^{2}-c^{2}}{2ab}}\right)\left(1-{\frac {a^{2}+b^{2}-c^{2}}{2ab}}\right)}}\\&={\sqrt {\left({\frac {2ab+(a^{2}+b^{2}-c^{2})}{2ab}}\right)\left({\frac {2ab-(a^{2}+b^{2}-c^{2})}{2ab}}\right)}}\\&={\sqrt {\left({\frac {(2ab+a^{2}+b^{2})-c^{2}}{2ab}}\right)\left({\frac {c^{2}-(a^{2}+b^{2}-2ab)}{2ab}}\right)}}\\&={\sqrt {\left[{\frac {(a+b)^{2}-c^{2}}{2ab}}\right]\left[{\frac {c^{2}-(a-b)^{2}}{2ab}}\right]}}\\&={\frac {\sqrt {(a+b+c)(a+b-c)(c+a-b)(c-a+b)}}{2ab}}\\&={\frac {\sqrt {(2s)(2s-2c)(2s-2b)(2s-2a)}}{2ab}}\\&={\frac {2}{ab}}{\sqrt {s(s-c)(s-b)(s-a)}}\end{aligned}}} A = 1 2 a b sin C = a b 2 ⋅ 2 a b s ( s − a ) ( s − b ) ( s − c ) = s ( s − a ) ( s − b ) ( s − c ) {\displaystyle {\begin{aligned}A&={\frac {1}{2}}ab\sin C\\&={\frac {ab}{2}}\cdot {\frac {2}{ab}}{\sqrt {s(s-a)(s-b)(s-c)}}\\&={\sqrt {s(s-a)(s-b)(s-c)}}\end{aligned}}} Remove ads利用勾股定理和代数式变形来证明 b 2 = h 2 + d 2 {\displaystyle b^{2}=h^{2}+d^{2}} a 2 = h 2 + ( c − d ) 2 {\displaystyle a^{2}=h^{2}+(c-d)^{2}} a 2 − b 2 = c 2 − 2 c d {\displaystyle a^{2}-b^{2}=c^{2}-2cd} d = − a 2 + b 2 + c 2 2 c {\displaystyle d={\frac {-a^{2}+b^{2}+c^{2}}{2c}}} h 2 = b 2 − ( − a 2 + b 2 + c 2 2 c ) 2 = ( 2 b c − a 2 + b 2 + c 2 ) ( 2 b c + a 2 − b 2 − c 2 ) 4 c 2 = ( ( b + c ) 2 − a 2 ) ( a 2 − ( b − c ) 2 ) 4 c 2 = ( b + c − a ) ( b + c + a ) ( a + b − c ) ( a − b + c ) 4 c 2 = 2 ( s − a ) ⋅ 2 s ⋅ 2 ( s − c ) ⋅ 2 ( s − b ) 4 c 2 = 4 s ( s − a ) ( s − b ) ( s − c ) c 2 {\displaystyle {\begin{aligned}h^{2}&=b^{2}-\left({\frac {-a^{2}+b^{2}+c^{2}}{2c}}\right)^{2}\\&={\frac {(2bc-a^{2}+b^{2}+c^{2})(2bc+a^{2}-b^{2}-c^{2})}{4c^{2}}}\\&={\frac {((b+c)^{2}-a^{2})(a^{2}-(b-c)^{2})}{4c^{2}}}\\&={\frac {(b+c-a)(b+c+a)(a+b-c)(a-b+c)}{4c^{2}}}\\&={\frac {2(s-a)\cdot 2s\cdot 2(s-c)\cdot 2(s-b)}{4c^{2}}}\\&={\frac {4s(s-a)(s-b)(s-c)}{c^{2}}}\end{aligned}}} A = c h 2 = c 2 4 ⋅ 4 s ( s − a ) ( s − b ) ( s − c ) c 2 = s ( s − a ) ( s − b ) ( s − c ) {\displaystyle {\begin{aligned}A&={\frac {ch}{2}}\\&={\sqrt {{\frac {c^{2}}{4}}\cdot {\frac {4s(s-a)(s-b)(s-c)}{c^{2}}}}}\\&={\sqrt {s(s-a)(s-b)(s-c)}}\end{aligned}}} Remove ads用旁心来证明 设 △ A B C {\displaystyle \bigtriangleup ABC} 中, A B ¯ = c , B C ¯ = a , C A ¯ = b {\displaystyle {\overline {AB}}=c,{\overline {BC}}=a,{\overline {CA}}=b} 。 I {\displaystyle I} 为内心, I a , I b , I c {\displaystyle I_{a},I_{b},I_{c}} 为三旁切圆。 ∵ ∠ I a B I = ∠ I a C I = 90 o {\displaystyle \because \angle I_{a}BI=\angle I_{a}CI=90^{\mathsf {o}}} ∴ I a C I B {\displaystyle \therefore I_{a}CIB} 四点共圆,并设此圆为圆 O {\displaystyle O} 。 过 I {\displaystyle I} 做铅直线交 B C ¯ {\displaystyle {\overline {BC}}} 于 P {\displaystyle P} ,再延长 I P ↔ {\displaystyle {\overleftrightarrow {IP}}} ,使之与圆 O {\displaystyle O} 交于 Q {\displaystyle Q} 点。再过 I a {\displaystyle I_{a}} 做铅直线交 B C ¯ {\displaystyle {\overline {BC}}} 于 R {\displaystyle R} 点。 先证明 ◻ I a Q P R {\displaystyle \Box I_{a}QPR} 为矩形: ∵ ∠ Q P R = 90 o , ∠ I a R P = 90 o {\displaystyle \because \angle QPR=90^{\mathsf {o}},\angle I_{a}RP=90^{\mathsf {o}}} ,又 ∠ I a Q I = ∠ I a B I = 90 o {\displaystyle \angle I_{a}QI=\angle I_{a}BI=90^{\mathsf {o}}} (圆周角相等)。 ∴ ◻ I a Q P R {\displaystyle \therefore \Box I_{a}QPR} 为矩形。因此, I a R ¯ = Q P ¯ {\displaystyle {\overline {I_{a}R}}={\overline {QP}}} 。 P I ¯ = {\displaystyle {\overline {PI}}=} 内切圆半径 = △ a + b + c 2 {\displaystyle ={\frac {\bigtriangleup }{\frac {a+b+c}{2}}}} , I a R ¯ = {\displaystyle {\overline {I_{a}R}}=} 旁切圆半径 = △ b + c − a 2 {\displaystyle ={\frac {\bigtriangleup }{\frac {b+c-a}{2}}}} 。且易知 B P ¯ = c + a − b 2 , P C ¯ = a + b − c 2 {\displaystyle {\overline {BP}}={\frac {c+a-b}{2}},{\overline {PC}}={\frac {a+b-c}{2}}} 。由圆幂性质得到: P C ¯ × P B ¯ = P Q ¯ × P I ¯ = I a R ¯ × P I ¯ {\displaystyle {\overline {PC}}\times {\overline {PB}}={\overline {PQ}}\times {\overline {PI}}={\overline {I_{a}R}}\times {\overline {PI}}} 。故 a + b − c 2 × c + a − b 2 = △ a + b + c 2 × △ b + c − a 2 {\displaystyle {\frac {a+b-c}{2}}\times {\frac {c+a-b}{2}}={\frac {\bigtriangleup }{\frac {a+b+c}{2}}}\times {\frac {\bigtriangleup }{\frac {b+c-a}{2}}}} ⇒△= a + b + c 2 × b + c − a 2 × a + c − b 2 × a + b − c 2 {\displaystyle \Rightarrow \bigtriangleup ={\sqrt {{\frac {a+b+c}{2}}\times {\frac {b+c-a}{2}}\times {\frac {a+c-b}{2}}\times {\frac {a+b-c}{2}}}}} Remove ads其他形式 海伦公式可改写成以幂和表示: A = 1 4 ( a 2 + b 2 + c 2 ) 2 − 2 ( a 4 + b 4 + c 4 ) = 1 4 2 ( a 2 b 2 + b 2 c 2 + a 2 c 2 ) − ( a 4 + b 4 + c 4 ) {\displaystyle {\begin{aligned}A&={\frac {1}{4}}{\sqrt {(a^{2}+b^{2}+c^{2})^{2}-2(a^{4}+b^{4}+c^{4})}}\\&={\frac {1}{4}}{\sqrt {2(a^{2}b^{2}+b^{2}c^{2}+a^{2}c^{2})-(a^{4}+b^{4}+c^{4})}}\\\end{aligned}}} [注 1] 证明 将海伦公式略为变形,知 16 A 2 = [ ( a + b ) + c ] [ ( a + b ) − c ] × [ c + ( a − b ) ] [ c − ( a − b ) ] {\displaystyle 16A^{2}=[(a+b)+c][(a+b)-c]\times [c+(a-b)][c-(a-b)]} 多次使用平方差公式,得 16 A 2 = [ ( a + b ) 2 − c 2 ] × [ c 2 − ( a − b ) 2 ] = [ 2 a b + ( a 2 + b 2 − c 2 ) ] × [ 2 a b − ( a 2 + b 2 − c 2 ) ] = ( 2 a b ) 2 − ( a 2 + b 2 − c 2 ) 2 = 4 a 2 b 2 − ( a 4 + b 4 + c 4 + 2 a 2 b 2 − 2 b 2 c 2 − 2 a 2 c 2 ) = ( 2 a 2 b 2 + 2 b 2 c 2 + 2 a 2 c 2 ) − ( a 4 + b 4 + c 4 ) = 2 ( a 2 b 2 + b 2 c 2 + a 2 c 2 ) − ( a 4 + b 4 + c 4 ) {\displaystyle {\begin{aligned}16A^{2}&=[(a+b)^{2}-c^{2}]\times [c^{2}-(a-b)^{2}]\\&=[2ab+(a^{2}+b^{2}-c^{2})]\times [2ab-(a^{2}+b^{2}-c^{2})]\\&=(2ab)^{2}-(a^{2}+b^{2}-c^{2})^{2}\\&=4a^{2}b^{2}-(a^{4}+b^{4}+c^{4}+2a^{2}b^{2}-2b^{2}c^{2}-2a^{2}c^{2})\\&=(2a^{2}b^{2}+2b^{2}c^{2}+2a^{2}c^{2})-(a^{4}+b^{4}+c^{4})\\&=2(a^{2}b^{2}+b^{2}c^{2}+a^{2}c^{2})-(a^{4}+b^{4}+c^{4})\\\end{aligned}}} 等号两边开根号,再同除以4,得 A = 1 4 2 ( a 2 b 2 + b 2 c 2 + a 2 c 2 ) − ( a 4 + b 4 + c 4 ) = 1 4 ( a 2 + b 2 + c 2 ) 2 − 2 ( a 4 + b 4 + c 4 ) {\displaystyle {\begin{aligned}A&={\frac {1}{4}}{\sqrt {2(a^{2}b^{2}+b^{2}c^{2}+a^{2}c^{2})-(a^{4}+b^{4}+c^{4})}}\\&={\frac {1}{4}}{\sqrt {(a^{2}+b^{2}+c^{2})^{2}-2(a^{4}+b^{4}+c^{4})}}\\\end{aligned}}} Remove ads注释Loading content...资料来源Loading content...参见Loading content...外部链接Loading content...Loading related searches...Wikiwand - on Seamless Wikipedia browsing. On steroids.Remove ads