欧拉在他的论文《无穷级数的一些检视》(Various Observations about Infinite Series)中证明黎曼ζ函数的欧拉乘积公式,并于1737年由当时的科学院出版。[1][2] 公式 黎曼ζ函数以欧拉乘积的方式可写成 ∑ n = 1 ∞ 1 n s = ∏ p prime 1 1 − p − s {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{s}}}=\prod _{p{\text{ prime}}}{\frac {1}{1-p^{-s}}}} 而左方等于黎曼ζ函数: ζ ( s ) = ∑ n = 1 ∞ 1 n s = 1 + 1 2 s + 1 3 s + 1 4 s + 1 5 s + … {\displaystyle \zeta (s)=\sum _{n=1}^{\infty }{\frac {1}{n^{s}}}=1+{\frac {1}{2^{s}}}+{\frac {1}{3^{s}}}+{\frac {1}{4^{s}}}+{\frac {1}{5^{s}}}+\ldots } 右方的乘积则扩展至所有素数p: ∏ p prime 1 1 − p − s = 1 1 − 2 − s ⋅ 1 1 − 3 − s ⋅ 1 1 − 5 − s ⋅ 1 1 − 7 − s ⋯ 1 1 − p − s ⋯ {\displaystyle \prod _{p{\text{ prime}}}{\frac {1}{1-p^{-s}}}={\frac {1}{1-2^{-s}}}\cdot {\frac {1}{1-3^{-s}}}\cdot {\frac {1}{1-5^{-s}}}\cdot {\frac {1}{1-7^{-s}}}\cdots {\frac {1}{1-p^{-s}}}\cdots } Remove ads证明 证明方法采用了埃拉托斯特尼筛法的概念,此筛法用于找寻出特定范围内的素数。 证明过程只需用到简单的代数概念,这亦是欧拉当初使用的证明方法。 ζ ( s ) = 1 + 1 2 s + 1 3 s + 1 4 s + 1 5 s + … {\displaystyle \zeta (s)=1+{\frac {1}{2^{s}}}+{\frac {1}{3^{s}}}+{\frac {1}{4^{s}}}+{\frac {1}{5^{s}}}+\ldots } (1) 1 2 s ζ ( s ) = 1 2 s + 1 4 s + 1 6 s + 1 8 s + 1 10 s + … {\displaystyle {\frac {1}{2^{s}}}\zeta (s)={\frac {1}{2^{s}}}+{\frac {1}{4^{s}}}+{\frac {1}{6^{s}}}+{\frac {1}{8^{s}}}+{\frac {1}{10^{s}}}+\ldots } (2) 从(1)式减去(2)式: ( 1 − 1 2 s ) ζ ( s ) = 1 + 1 3 s + 1 5 s + 1 7 s + 1 9 s + 1 11 s + 1 13 s + … {\displaystyle \left(1-{\frac {1}{2^{s}}}\right)\zeta (s)=1+{\frac {1}{3^{s}}}+{\frac {1}{5^{s}}}+{\frac {1}{7^{s}}}+{\frac {1}{9^{s}}}+{\frac {1}{11^{s}}}+{\frac {1}{13^{s}}}+\ldots } (3) 重复上面步骤: 1 3 s ( 1 − 1 2 s ) ζ ( s ) = 1 3 s + 1 9 s + 1 15 s + 1 21 s + 1 27 s + 1 33 s + … {\displaystyle {\frac {1}{3^{s}}}\left(1-{\frac {1}{2^{s}}}\right)\zeta (s)={\frac {1}{3^{s}}}+{\frac {1}{9^{s}}}+{\frac {1}{15^{s}}}+{\frac {1}{21^{s}}}+{\frac {1}{27^{s}}}+{\frac {1}{33^{s}}}+\ldots } (4) 从(3)式减去(4)式,可得: ( 1 − 1 3 s ) ( 1 − 1 2 s ) ζ ( s ) = 1 + 1 5 s + 1 7 s + 1 11 s + 1 13 s + 1 17 s + … {\displaystyle \left(1-{\frac {1}{3^{s}}}\right)\left(1-{\frac {1}{2^{s}}}\right)\zeta (s)=1+{\frac {1}{5^{s}}}+{\frac {1}{7^{s}}}+{\frac {1}{11^{s}}}+{\frac {1}{13^{s}}}+{\frac {1}{17^{s}}}+\ldots } 这次2和3的所有倍数项都被减去。可见右方的的倍数项可被筛去,不断重复以上步骤可得: … ( 1 − 1 11 s ) ( 1 − 1 7 s ) ( 1 − 1 5 s ) ( 1 − 1 3 s ) ( 1 − 1 2 s ) ζ ( s ) = 1 {\displaystyle \ldots \left(1-{\frac {1}{11^{s}}}\right)\left(1-{\frac {1}{7^{s}}}\right)\left(1-{\frac {1}{5^{s}}}\right)\left(1-{\frac {1}{3^{s}}}\right)\left(1-{\frac {1}{2^{s}}}\right)\zeta (s)=1} 左右两方除以所有括号项,我们得到: ζ ( s ) = 1 ( 1 − 1 2 s ) ( 1 − 1 3 s ) ( 1 − 1 5 s ) ( 1 − 1 7 s ) ( 1 − 1 11 s ) … {\displaystyle \zeta (s)={\frac {1}{\left(1-{\frac {1}{2^{s}}}\right)\left(1-{\frac {1}{3^{s}}}\right)\left(1-{\frac {1}{5^{s}}}\right)\left(1-{\frac {1}{7^{s}}}\right)\left(1-{\frac {1}{11^{s}}}\right)\ldots }}} 最后,公式可写成素数的无穷乘积: ζ ( s ) = ∏ p prime 1 1 − p − s {\displaystyle \zeta (s)=\prod _{p{\text{ prime}}}{\frac {1}{1-p^{-s}}}} 证毕。 为了使证明更严密,我们只需注意到当 ℜ ( s ) > 1 {\displaystyle \Re (s)>1} ,已筛的右方项趋向1,并遵从狄利克雷级数的收敛性。 Remove ads调和级数 从以上公式可推导出 ζ(1) 的有趣结果。 … ( 1 − 1 11 ) ( 1 − 1 7 ) ( 1 − 1 5 ) ( 1 − 1 3 ) ( 1 − 1 2 ) ζ ( 1 ) = 1 {\displaystyle \ldots \left(1-{\frac {1}{11}}\right)\left(1-{\frac {1}{7}}\right)\left(1-{\frac {1}{5}}\right)\left(1-{\frac {1}{3}}\right)\left(1-{\frac {1}{2}}\right)\zeta (1)=1} 可以写成, … ( 10 11 ) ( 6 7 ) ( 4 5 ) ( 2 3 ) ( 1 2 ) ζ ( 1 ) = 1 {\displaystyle \ldots \left({\frac {10}{11}}\right)\left({\frac {6}{7}}\right)\left({\frac {4}{5}}\right)\left({\frac {2}{3}}\right)\left({\frac {1}{2}}\right)\zeta (1)=1} ( … ⋅ 10 ⋅ 6 ⋅ 4 ⋅ 2 ⋅ 1 … ⋅ 11 ⋅ 7 ⋅ 5 ⋅ 3 ⋅ 2 ) ζ ( 1 ) = 1 {\displaystyle \left({\frac {\ldots \cdot 10\cdot 6\cdot 4\cdot 2\cdot 1}{\ldots \cdot 11\cdot 7\cdot 5\cdot 3\cdot 2}}\right)\zeta (1)=1} 又知: ζ ( 1 ) = 1 + 1 2 + 1 3 + 1 4 + 1 5 + … {\displaystyle \zeta (1)=1+{\frac {1}{2}}+{\frac {1}{3}}+{\frac {1}{4}}+{\frac {1}{5}}+\ldots } 所以 1 + 1 2 + 1 3 + 1 4 + 1 5 + … = 2 ⋅ 3 ⋅ 5 ⋅ 7 ⋅ 11 ⋅ … 1 ⋅ 2 ⋅ 4 ⋅ 6 ⋅ 10 ⋅ … {\displaystyle 1+{\frac {1}{2}}+{\frac {1}{3}}+{\frac {1}{4}}+{\frac {1}{5}}+\ldots ={\frac {2\cdot 3\cdot 5\cdot 7\cdot 11\cdot \ldots }{1\cdot 2\cdot 4\cdot 6\cdot 10\cdot \ldots }}} 我们得知左式是调和级数,并发散至无穷大,故此右式的分子(素数阶乘)必定同样发散至无穷大。由此可以证明素数有无限多个。 Remove ads参见 黎曼ζ函数 欧拉乘积 狄利克雷级数 埃拉托斯特尼筛法 素数 参考资料Loading content...Loading related searches...Wikiwand - on Seamless Wikipedia browsing. On steroids.Remove ads