双曲正弦积分函数定义为[1][2] Shi(x) 2D plot S h i ( z ) = ∫ 0 z sinh ( t ) t d t {\displaystyle {\it {Shi}}\left(z\right)=\int _{0}^{z}\!{\frac {\sinh \left(t\right)}{t}}{dt}} S h i ( z ) {\displaystyle Shi(z)} 是下列三阶常微分方程的一个解: z d d z w ( z ) − 2 d 2 d z 2 w ( z ) − z d 3 d z 3 w ( z ) = 0 {\displaystyle z{\frac {d}{dz}}w\left(z\right)-2\,{\frac {d^{2}}{d{z}^{2}}}w\left(z\right)-z{\frac {d^{3}}{d{z}^{3}}}w\left(z\right)=0} 即: w ( z ) = _ C 1 + _ C 2 S h i ( z ) + _ C 3 C h i ( z ) {\displaystyle w\left(z\right)={\it {\_C1}}+{\it {\_C2}}\,{\it {Shi}}\left(z\right)+{\it {\_C3}}\,{\it {Chi}}\left(z\right)} Remove ads与其他特殊函数的关系 Meijer G函数 {\displaystyle } 超几何函数 S h i ( z ) = z ∗ 1 F 2 ( 1 / 2 ; 3 / 2 , 3 / 2 ; ( 1 / 4 ) ∗ z 2 ) {\displaystyle Shi(z)=z*_{1}F_{2}(1/2;3/2,3/2;(1/4)*z^{2})} − 1 2 i π G 1 , 3 1 , 1 ( − 1 / 4 z 2 | 1 / 2 , 0 , 0 1 ) {\displaystyle {\frac {-1}{2}}\,i{\sqrt {\pi }}G_{1,3}^{1,1}\left(-1/4\,{z}^{2}\,{\Big \vert }\,_{1/2,0,0}^{1}\right)} Remove ads级数展开 S h i ( z ) = ( z + 1 18 z 3 + 1 600 z 5 + 1 35280 z 7 + 1 3265920 z 9 + 1 439084800 z 11 + 1 80951270400 z 13 + O ( z 15 ) ) {\displaystyle {\it {Shi}}\left(z\right)=(z+{\frac {1}{18}}{z}^{3}+{\frac {1}{600}}{z}^{5}+{\frac {1}{35280}}{z}^{7}+{\frac {1}{3265920}}{z}^{9}+{\frac {1}{439084800}}{z}^{11}+{\frac {1}{80951270400}}{z}^{13}+O\left({z}^{15}\right))} Remove ads帕德近似 帕德近似 S h i ( z ) ≈ ( 33317056220720070437 9686419676455776844590000 z 7 + 67177799936189717 98024149196718942600 z 5 + 540705278447237 16111793096107650 z 3 + z ) ( 1 − 177197169001594 8055896548053825 z 2 + 87368534024947 363052404432292380 z 4 − 212787117226481 131788022808922133940 z 6 + 10065927082366801 1707972775603630855862400 z 8 ) − 1 {\displaystyle Shi(z)\approx \left({\frac {33317056220720070437}{9686419676455776844590000}}\,{z}^{7}+{\frac {67177799936189717}{98024149196718942600}}\,{z}^{5}+{\frac {540705278447237}{16111793096107650}}\,{z}^{3}+z\right)\left(1-{\frac {177197169001594}{8055896548053825}}\,{z}^{2}+{\frac {87368534024947}{363052404432292380}}\,{z}^{4}-{\frac {212787117226481}{131788022808922133940}}\,{z}^{6}+{\frac {10065927082366801}{1707972775603630855862400}}\,{z}^{8}\right)^{-1}} Remove ads图集 Shi(x) Re complex 3D plot Shi(x) Im complex 3D plot Shi(x) abs complex 3D plot Shi(x) abs complex density plot Shi(x) Re complex density plot Shi(x) Im complex density plot 参见 Sinhc函数 Coshc函数 Tanc函数 Tanhc函数 Chi函数 参考文献Loading content...Loading related searches...Wikiwand - on Seamless Wikipedia browsing. On steroids.Remove ads