在数学中,三角恒等式是对出现的所有值都为实变量,涉及到三角函数的等式。这些恒等式在表达式中有些三角函数需要简化的时候是很有用的。一个重要应用是非三角函数的积分:一个常用技巧是首先使用使用三角函数的代换规则,则通过三角恒等式可简化结果的积分。 在几何上依据以O为中心的单位圆可以构造角θ的很多三角函数 三角函数示意图 由于技术原因,此旧版图表已停用,并须迁移至新版图表。造成您的不便,我们深表歉意。 几个三角函数的图形,分别为正弦、馀弦、正切、馀切、正割、馀割和正矢。配色与上图相同 单位圆的角度 符号 为了避免由于 sin − 1  x {\displaystyle \sin ^{-1}x} 的不同意思所带来的混淆,我们经常用下列两个表格来表示三角函数的倒数和反函数。另外在表示余割函数时,' csc {\displaystyle \csc } '有时会写成比较长的' c o s e c {\displaystyle \mathrm {cosec} } '。 更多信息 函数, 反函数 ... 函数 反函数 倒数 中文 全写 简写 中文 全写 简写 中文 全写 简写 正弦 sine sin 反正弦 arcsine arcsin 馀割 cosecant csc 馀弦 cosine cos 反馀弦 arccosine arccos 正割 secant sec 正切 tangent tan 反正切 arctangent arctan 馀切 cotangent cot 馀切 cotangent cot 反馀切 arccotangent arccot 正切 tangent tan 正割 secant sec 反正割 arcsecant arcsec 馀弦 cosine cos 馀割 cosecant csc 反馀割 arccosecant arccsc 正弦 sine sin 关闭 不同的角度度量适合于不同的情况。本表展示最常用的系统。弧度是缺省的角度量并用在指数函数中。所有角度度量都是无单位的。另外在计算机中角度的符号为D,弧度的符号为R,梯度的符号为G。 更多信息 , ... 相同角度的转换表 角度单位 值 计算机中代号 转 0 {\displaystyle 0} 1 12 {\displaystyle {\frac {1}{12}}} 1 8 {\displaystyle {\frac {1}{8}}} 1 6 {\displaystyle {\frac {1}{6}}} 1 4 {\displaystyle {\frac {1}{4}}} 1 2 {\displaystyle {\frac {1}{2}}} 3 4 {\displaystyle {\frac {3}{4}}} 1 {\displaystyle 1} 无 角度 0 ∘ {\displaystyle 0^{\circ }} 30 ∘ {\displaystyle 30^{\circ }} 45 ∘ {\displaystyle 45^{\circ }} 60 ∘ {\displaystyle 60^{\circ }} 90 ∘ {\displaystyle 90^{\circ }} 180 ∘ {\displaystyle 180^{\circ }} 270 ∘ {\displaystyle 270^{\circ }} 360 ∘ {\displaystyle 360^{\circ }} D 弧度 0 {\displaystyle 0} π 6 {\displaystyle {\frac {\pi }{6}}} π 4 {\displaystyle {\frac {\pi }{4}}} π 3 {\displaystyle {\frac {\pi }{3}}} π 2 {\displaystyle {\frac {\pi }{2}}} π {\displaystyle \pi } 3 π 2 {\displaystyle {\frac {3\pi }{2}}} 2 π {\displaystyle 2\pi } R 梯度 0 g {\displaystyle 0^{g}} 33 1 3 g {\displaystyle 33{\frac {1}{3}}^{g}} 50 g {\displaystyle 50^{g}} 66 2 3 g {\displaystyle 66{\frac {2}{3}}^{g}} 100 g {\displaystyle 100^{g}} 200 g {\displaystyle 200^{g}} 300 g {\displaystyle 300^{g}} 400 g {\displaystyle 400^{g}} G 关闭 Remove ads基本关系 三角函数间的关系,可分成正函数和馀函数 毕达哥拉斯三角恒等式如下: sin 2  θ + cos 2  θ = 1 {\displaystyle \sin ^{2}\theta +\cos ^{2}\theta =1\,} tan 2  θ + 1 = sec 2  θ {\displaystyle \tan ^{2}\theta +1\,=\sec ^{2}\theta } 1 + cot 2  θ = csc 2  θ {\displaystyle 1\,+\cot ^{2}\theta =\csc ^{2}\theta } 由上面的平方关系加上三角函数的基本定义,可以导出下面的表格,即每个三角函数都可以用其他五个表达。(严谨地说,所有根号前都应根据实际情况添加正负号) 更多信息 , ... 函数 sin {\displaystyle \sin } cos {\displaystyle \cos } tan {\displaystyle \tan } cot {\displaystyle \cot } sec {\displaystyle \sec } csc {\displaystyle \csc } sin  θ {\displaystyle \sin \theta } sin  θ {\displaystyle \sin \theta \ } 1 − cos 2  θ {\displaystyle {\sqrt {1-\cos ^{2}\theta }}} tan  θ 1 + tan 2  θ {\displaystyle {\frac {\tan \theta }{\sqrt {1+\tan ^{2}\theta }}}} 1 1 + cot 2  θ {\displaystyle {\frac {1}{\sqrt {1+\cot ^{2}\theta }}}} sec 2  θ − 1 sec  θ {\displaystyle {\frac {\sqrt {\sec ^{2}\theta -1}}{\sec \theta }}} 1 csc  θ {\displaystyle {\frac {1}{\csc \theta }}} cos  θ {\displaystyle \cos \theta } 1 − sin 2  θ {\displaystyle {\sqrt {1-\sin ^{2}\theta }}} cos  θ {\displaystyle \cos \theta \ } 1 1 + tan 2  θ {\displaystyle {\frac {1}{\sqrt {1+\tan ^{2}\theta }}}} cot  θ 1 + cot 2  θ {\displaystyle {\frac {\cot \theta }{\sqrt {1+\cot ^{2}\theta }}}} 1 sec  θ {\displaystyle {\frac {1}{\sec \theta }}} csc 2  θ − 1 csc  θ {\displaystyle {\frac {\sqrt {\csc ^{2}\theta -1}}{\csc \theta }}} tan  θ {\displaystyle \tan \theta } sin  θ 1 − sin 2  θ {\displaystyle {\frac {\sin \theta }{\sqrt {1-\sin ^{2}\theta }}}} 1 − cos 2  θ cos  θ {\displaystyle {\frac {\sqrt {1-\cos ^{2}\theta }}{\cos \theta }}} tan  θ {\displaystyle \tan \theta \ } 1 cot  θ {\displaystyle {\frac {1}{\cot \theta }}} sec 2  θ − 1 {\displaystyle {\sqrt {\sec ^{2}\theta -1}}} 1 csc 2  θ − 1 {\displaystyle {\frac {1}{\sqrt {\csc ^{2}\theta -1}}}} cot  θ {\displaystyle \cot \theta } 1 − sin 2  θ sin  θ {\displaystyle {{\sqrt {1-\sin ^{2}\theta }} \over \sin \theta }} cos  θ 1 − cos 2  θ {\displaystyle {\cos \theta \over {\sqrt {1-\cos ^{2}\theta }}}} 1 tan  θ {\displaystyle {1 \over \tan \theta }} cot  θ {\displaystyle \cot \theta \ } 1 sec 2  θ − 1 {\displaystyle {1 \over {\sqrt {\sec ^{2}\theta -1}}}} csc 2  θ − 1 {\displaystyle {\sqrt {\csc ^{2}\theta -1}}} sec  θ {\displaystyle \sec \theta } 1 1 − sin 2  θ {\displaystyle {1 \over {\sqrt {1-\sin ^{2}\theta }}}} 1 cos  θ {\displaystyle {1 \over \cos \theta }} 1 + tan 2  θ {\displaystyle {\sqrt {1+\tan ^{2}\theta }}} 1 + cot 2  θ cot  θ {\displaystyle {{\sqrt {1+\cot ^{2}\theta }} \over \cot \theta }} sec  θ {\displaystyle \sec \theta \ } csc  θ csc 2  θ − 1 {\displaystyle {\csc \theta \over {\sqrt {\csc ^{2}\theta -1}}}} csc  θ {\displaystyle \csc \theta } 1 sin  θ {\displaystyle {1 \over \sin \theta }} 1 1 − cos 2  θ {\displaystyle {1 \over {\sqrt {1-\cos ^{2}\theta }}}} 1 + tan 2  θ tan  θ {\displaystyle {{\sqrt {1+\tan ^{2}\theta }} \over \tan \theta }} 1 + cot 2  θ {\displaystyle {\sqrt {1+\cot ^{2}\theta }}} sec  θ sec 2  θ − 1 {\displaystyle {\sec \theta \over {\sqrt {\sec ^{2}\theta -1}}}} csc  θ {\displaystyle \csc \theta \ } 关闭 Remove ads其他函数的基本关系 正矢、馀矢、半正矢、半馀矢、外正割用于航行。例如半正矢可以计算球体上的两个点之间的距离,但它们不常用。 更多信息 , ... 名称 函数 值[1] 正矢, versine versin  θ {\displaystyle \operatorname {versin} \theta } vers  θ {\displaystyle \operatorname {vers} \theta } ver  θ {\displaystyle \operatorname {ver} \theta } 1 − cos  θ {\displaystyle 1-\cos \theta } 馀的正矢, vercosine vercosin  θ {\displaystyle \operatorname {vercosin} \theta } 1 + cos  θ {\displaystyle 1+\cos \theta } 馀矢, coversine coversin  θ {\displaystyle \operatorname {coversin} \theta } cvs  θ {\displaystyle \operatorname {cvs} \theta } 1 − sin  θ {\displaystyle 1-\sin \theta } 馀的馀矢, covercosine covercosin  θ {\displaystyle \operatorname {covercosin} \theta } 1 + sin  θ {\displaystyle 1+\sin \theta } 半正矢, haversine haversin  θ {\displaystyle \operatorname {haversin} \theta } 1 − cos  θ 2 {\displaystyle {\frac {1-\cos \theta }{2}}} 馀的半正矢, havercosine havercosin  θ {\displaystyle \operatorname {havercosin} \theta } 1 + cos  θ 2 {\displaystyle {\frac {1+\cos \theta }{2}}} 半馀矢, hacoversinecohaversine hacoversin  θ {\displaystyle \operatorname {hacoversin} \theta } 1 − sin  θ 2 {\displaystyle {\frac {1-\sin \theta }{2}}} 馀的半馀矢, hacovercosinecohavercosine hacovercosin  θ {\displaystyle \operatorname {hacovercosin} \theta } 1 + sin  θ 2 {\displaystyle {\frac {1+\sin \theta }{2}}} 外正割,exsecant exsec  θ {\displaystyle \operatorname {exsec} \theta } sec  θ − 1 {\displaystyle \sec \theta -1} 外馀割,excosecant excsc  θ {\displaystyle \operatorname {excsc} \theta } csc  θ − 1 {\displaystyle \csc \theta -1} 弦函数, chord crd  θ {\displaystyle \operatorname {crd} \theta } 2 sin  ( θ 2 ) {\displaystyle 2\sin \left({\frac {\theta }{2}}\right)} 纯虚数指数函数, cosine and imaginary unit sine cis  θ {\displaystyle \operatorname {cis} \theta } cos  θ + i sin  θ {\displaystyle \cos \theta +i\;\sin \theta } 辐角,Argument arg  x {\displaystyle \arg x} Im  ( ln  x ) {\displaystyle \operatorname {Im} (\ln x)} 弧,Arc arc x θ {\displaystyle \theta } 关闭 Remove ads对称、移位和周期 通过检视单位圆,可确立三角函数的下列性质,这些性质也被称为诱导公式: 维基教科书有诱导公式相关的教科书和手册 对称 当三角函数反射自某个特定的 θ {\displaystyle \theta } 值,结果经常是另一个其他三角函数。这导致了下列恒等式: 更多信息 反射于 ... 反射于 θ = 0 {\displaystyle \theta =0} 反射于 θ = π 4 {\displaystyle \theta ={\tfrac {\pi }{4}}} 反射于 θ = π 2 {\displaystyle \theta ={\tfrac {\pi }{2}}} 反射于 θ = 3 π 4 {\displaystyle \theta ={\tfrac {3\pi }{4}}} sin  ( 0 − θ ) = − sin  θ cos  ( 0 − θ ) = + cos  θ tan  ( 0 − θ ) = − tan  θ cot  ( 0 − θ ) = − cot  θ sec  ( 0 − θ ) = + sec  θ csc  ( 0 − θ ) = − csc  θ {\displaystyle {\begin{aligned}\sin(0-\theta )&=-\sin \theta \\\cos(0-\theta )&=+\cos \theta \\\tan(0-\theta )&=-\tan \theta \\\cot(0-\theta )&=-\cot \theta \\\sec(0-\theta )&=+\sec \theta \\\csc(0-\theta )&=-\csc \theta \end{aligned}}} sin  ( π 2 − θ ) = + cos  θ cos  ( π 2 − θ ) = + sin  θ tan  ( π 2 − θ ) = + cot  θ cot  ( π 2 − θ ) = + tan  θ sec  ( π 2 − θ ) = + csc  θ csc  ( π 2 − θ ) = + sec  θ {\displaystyle {\begin{aligned}\sin({\tfrac {\pi }{2}}-\theta )&=+\cos \theta \\\cos({\tfrac {\pi }{2}}-\theta )&=+\sin \theta \\\tan({\tfrac {\pi }{2}}-\theta )&=+\cot \theta \\\cot({\tfrac {\pi }{2}}-\theta )&=+\tan \theta \\\sec({\tfrac {\pi }{2}}-\theta )&=+\csc \theta \\\csc({\tfrac {\pi }{2}}-\theta )&=+\sec \theta \end{aligned}}} sin  ( π − θ ) = + sin  θ cos  ( π − θ ) = − cos  θ tan  ( π − θ ) = − tan  θ cot  ( π − θ ) = − cot  θ sec  ( π − θ ) = − sec  θ csc  ( π − θ ) = + csc  θ {\displaystyle {\begin{aligned}\sin(\pi -\theta )&=+\sin \theta \\\cos(\pi -\theta )&=-\cos \theta \\\tan(\pi -\theta )&=-\tan \theta \\\cot(\pi -\theta )&=-\cot \theta \\\sec(\pi -\theta )&=-\sec \theta \\\csc(\pi -\theta )&=+\csc \theta \end{aligned}}} sin  ( 3 π 2 − θ ) = − cos  θ cos  ( 3 π 2 − θ ) = − sin  θ tan  ( 3 π 2 − θ ) = + cot  θ cot  ( 3 π 2 − θ ) = + tan  θ sec  ( 3 π 2 − θ ) = − csc  θ csc  ( 3 π 2 − θ ) = − sec  θ {\displaystyle {\begin{aligned}\sin({\tfrac {3\pi }{2}}-\theta )&=-\cos \theta \\\cos({\tfrac {3\pi }{2}}-\theta )&=-\sin \theta \\\tan({\tfrac {3\pi }{2}}-\theta )&=+\cot \theta \\\cot({\tfrac {3\pi }{2}}-\theta )&=+\tan \theta \\\sec({\tfrac {3\pi }{2}}-\theta )&=-\csc \theta \\\csc({\tfrac {3\pi }{2}}-\theta )&=-\sec \theta \end{aligned}}} 关闭 Remove ads移位和周期 通过旋转特定角度移位三角函数,经常可以找到更简单的表达结果的不同的三角函数。例如通过旋转 π 2 {\displaystyle {\tfrac {\pi }{2}}} 、 π {\displaystyle \pi } 和 2 π {\displaystyle 2\pi } 弧度移位函数。因为这些函数的周期要么是 π {\displaystyle \pi } 要么是 2 π {\displaystyle 2\pi } ,所以新函数和没有移位的旧函数完全一样。 更多信息 移位 ... 移位 π 2 {\displaystyle {\tfrac {\pi }{2}}} 移位 π {\displaystyle \pi } 移位 3 π 2 {\displaystyle {\tfrac {3\pi }{2}}} 移位 2 π {\displaystyle 2\pi } tan {\displaystyle \tan } 和 cot {\displaystyle \cot } 的周期 sin {\displaystyle \sin } , cos {\displaystyle \cos } , csc {\displaystyle \csc } 和 sec {\displaystyle \sec } 的周期 sin  ( θ + π 2 ) = + cos  θ cos  ( θ + π 2 ) = − sin  θ tan  ( θ + π 2 ) = − cot  θ cot  ( θ + π 2 ) = − tan  θ sec  ( θ + π 2 ) = − csc  θ csc  ( θ + π 2 ) = + sec  θ {\displaystyle {\begin{aligned}\sin(\theta +{\tfrac {\pi }{2}})&=+\cos \theta \\\cos(\theta +{\tfrac {\pi }{2}})&=-\sin \theta \\\tan(\theta +{\tfrac {\pi }{2}})&=-\cot \theta \\\cot(\theta +{\tfrac {\pi }{2}})&=-\tan \theta \\\sec(\theta +{\tfrac {\pi }{2}})&=-\csc \theta \\\csc(\theta +{\tfrac {\pi }{2}})&=+\sec \theta \end{aligned}}} sin  ( θ + π ) = − sin  θ cos  ( θ + π ) = − cos  θ tan  ( θ + π ) = + tan  θ cot  ( θ + π ) = + cot  θ sec  ( θ + π ) = − sec  θ csc  ( θ + π ) = − csc  θ {\displaystyle {\begin{aligned}\sin(\theta +\pi )&=-\sin \theta \\\cos(\theta +\pi )&=-\cos \theta \\\tan(\theta +\pi )&=+\tan \theta \\\cot(\theta +\pi )&=+\cot \theta \\\sec(\theta +\pi )&=-\sec \theta \\\csc(\theta +\pi )&=-\csc \theta \end{aligned}}} sin  ( θ + 3 π 2 ) = − cos  θ cos  ( θ + 3 π 2 ) = + sin  θ tan  ( θ + 3 π 2 ) = − cot  θ cot  ( θ + 3 π 2 ) = − tan  θ sec  ( θ + 3 π 2 ) = + csc  θ csc  ( θ + 3 π 2 ) = − sec  θ {\displaystyle {\begin{aligned}\sin(\theta +{\tfrac {3\pi }{2}})&=-\cos \theta \\\cos(\theta +{\tfrac {3\pi }{2}})&=+\sin \theta \\\tan(\theta +{\tfrac {3\pi }{2}})&=-\cot \theta \\\cot(\theta +{\tfrac {3\pi }{2}})&=-\tan \theta \\\sec(\theta +{\tfrac {3\pi }{2}})&=+\csc \theta \\\csc(\theta +{\tfrac {3\pi }{2}})&=-\sec \theta \end{aligned}}} sin  ( θ + 2 π ) = + sin  θ cos  ( θ + 2 π ) = + cos  θ tan  ( θ + 2 π ) = + tan  θ cot  ( θ + 2 π ) = + cot  θ sec  ( θ + 2 π ) = + sec  θ csc  ( θ + 2 π ) = + csc  θ {\displaystyle {\begin{aligned}\sin(\theta +2\pi )&=+\sin \theta \\\cos(\theta +2\pi )&=+\cos \theta \\\tan(\theta +2\pi )&=+\tan \theta \\\cot(\theta +2\pi )&=+\cot \theta \\\sec(\theta +2\pi )&=+\sec \theta \\\csc(\theta +2\pi )&=+\csc \theta \end{aligned}}} 关闭 Remove ads角的和差恒等式 正弦与馀弦的角和公式的图形证明法。使用了相似三角形的性质与三角函数的定义,强调的线段是单位长度 正切的角和公式的图形证明法。使用了相似三角形的性质与三角函数的定义,强调的线段是单位长度。 又称做“和差定理”、“和差公式”或“和角公式”。最简要的检定方式是使用欧拉公式[注 1]。 更多信息 , ... 正弦 sin  ( α ± β ) = sin  α cos  β ± cos  α sin  β {\displaystyle \sin(\alpha \pm \beta )=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta \,} 余弦 cos  ( α ± β ) = cos  α cos  β ∓ sin  α sin  β {\displaystyle \cos(\alpha \pm \beta )=\cos \alpha \cos \beta \mp \sin \alpha \sin \beta \,} 正切 tan  ( α ± β ) = tan  α ± tan  β 1 ∓ tan  α tan  β {\displaystyle \tan(\alpha \pm \beta )={\frac {\tan \alpha \pm \tan \beta }{1\mp \tan \alpha \tan \beta }}} 余切 cot  ( α ± β ) = cot  α cot  β ∓ 1 cot  β ± cot  α {\displaystyle \cot(\alpha \pm \beta )={\frac {\cot \alpha \cot \beta \mp 1}{\cot \beta \pm \cot \alpha }}} 正割 sec  ( α ± β ) = sec  α sec  β 1 ∓ tan  α tan  β {\displaystyle \sec(\alpha \pm \beta )={\frac {\sec \alpha \sec \beta }{1\mp \tan \alpha \tan \beta }}} 余割 csc  ( α ± β ) = csc  α csc  β cot  β ± cot  α {\displaystyle \csc(\alpha \pm \beta )={\frac {\csc \alpha \csc \beta }{\cot \beta \pm \cot \alpha }}} 注意正负号的对应。 x ± y = a ± b ⇒ x + y = a + b and x − y = a − b {\displaystyle {\begin{aligned}x\pm y=a\pm b&\Rightarrow \ x+y=a+b\\&{\mbox{and}}\ x-y=a-b\end{aligned}}} x ± y = a ∓ b ⇒ x + y = a − b and x − y = a + b {\displaystyle {\begin{aligned}x\pm y=a\mp b&\Rightarrow \ x+y=a-b\\&{\mbox{and}}\ x-y=a+b\end{aligned}}} 关闭 根据 s i n π 4 = c o s π 4 = 1 2 {\displaystyle sin{\frac {\pi }{4}}=cos{\frac {\pi }{4}}={\frac {1}{\sqrt {2}}}} ,以及和差恒等式,可以得到同角的正弦余弦的和差关系,例如, sin  α + cos  α = 2 ( sin  α cos  π 4 + sin  π 4 cos  α ) = 2 sin  ( α + π 4 ) = 2 cos  ( α − π 4 ) {\displaystyle \sin \alpha +\cos \alpha ={\sqrt {2}}\left(\sin \alpha \cos {\frac {\pi }{4}}+\sin {\frac {\pi }{4}}\cos \alpha \right)={\sqrt {2}}\sin \left(\alpha +{\frac {\pi }{4}}\right)={\sqrt {2}}\cos \left(\alpha -{\frac {\pi }{4}}\right)} sin  α − cos  α = 2 ( sin  α cos  π 4 − sin  π 4 cos  α ) = 2 sin  ( α − π 4 ) = 2 cos  ( α + π 4 ) {\displaystyle \sin \alpha -\cos \alpha ={\sqrt {2}}\left(\sin \alpha \cos {\frac {\pi }{4}}-\sin {\frac {\pi }{4}}\cos \alpha \right)={\sqrt {2}}\sin \left(\alpha -{\frac {\pi }{4}}\right)={\sqrt {2}}\cos \left(\alpha +{\frac {\pi }{4}}\right)} Remove ads正弦与余弦的无限多项和 sin  ( ∑ i = 1 ∞ θ i ) = ∑ o d d k ≥ 1 ( − 1 ) k − 1 2 ∑ | A | = k ( ∏ i ∈ A sin  θ i ∏ i ∉ A cos  θ i ) {\displaystyle \sin \left(\sum _{i=1}^{\infty }\theta _{i}\right)=\sum _{\mathrm {odd} \ k\geq 1}(-1)^{\frac {k-1}{2}}\sum _{|A|=k}\left(\prod _{i\in A}\sin \theta _{i}\prod _{i\not \in A}\cos \theta _{i}\right)} cos  ( ∑ i = 1 ∞ θ i ) = ∑ e v e n k ≥ 0 ( − 1 ) k 2 ∑ | A | = k ( ∏ i ∈ A sin  θ i ∏ i ∉ A cos  θ i ) {\displaystyle \cos \left(\sum _{i=1}^{\infty }\theta _{i}\right)=\sum _{\mathrm {even} \ k\geq 0}~(-1)^{\frac {k}{2}}~~\sum _{|A|=k}\left(\prod _{i\in A}\sin \theta _{i}\prod _{i\not \in A}\cos \theta _{i}\right)} 这里的" | A | = k {\displaystyle |A|=k} "意味著索引 A {\displaystyle A} 遍历集合 { 1 , 2 , 3 , … } {\displaystyle \left\{1,2,3,\ldots \right\}} 的大小为 k {\displaystyle k} 的所有子集的集合。 在这两个恒等式中出现了在有限多项中不出现的不对称:在每个乘积中,只有有限多个正弦因子和馀有限多个余弦因子。 如果只有有限多项 θ i {\displaystyle \theta _{i}} 是非零,则在右边只有有限多项是非零,因为正弦因子将变为零,而在每个项中,所有却有限多的余弦因子将是单位一。 Remove ads正切的有限多项和 设 x i = tan  θ i {\displaystyle x_{i}=\tan \theta _{i}} ,对于 i = 1 , … , n {\displaystyle i=1,\ldots ,n} 。设 e k {\displaystyle e_{k}} 是变量 x i {\displaystyle x_{i}} , i = 1 , … , n {\displaystyle i=1,\ldots ,n} , k = 0 , … , n {\displaystyle k=0,\ldots ,n} 的 k {\displaystyle k} 次基本对称多项式。则 tan  ( θ 1 + ⋯ + θ n ) = e 1 − e 3 + e 5 − ⋯ e 0 − e 2 + e 4 − ⋯ , {\displaystyle \tan(\theta _{1}+\cdots +\theta _{n})={\frac {e_{1}-e_{3}+e_{5}-\cdots }{e_{0}-e_{2}+e_{4}-\cdots }},} 项的数目依赖于 n {\displaystyle n} 。例如, tan  ( θ 1 + θ 2 + θ 3 ) = e 1 − e 3 e 0 − e 2 = ( x 1 + x 2 + x 3 ) − ( x 1 x 2 x 3 ) 1 − ( x 1 x 2 + x 1 x 3 + x 2 x 3 ) , tan  ( θ 1 + θ 2 + θ 3 + θ 4 ) = e 1 − e 3 e 0 − e 2 + e 4 = ( x 1 + x 2 + x 3 + x 4 ) − ( x 1 x 2 x 3 + x 1 x 2 x 4 + x 1 x 3 x 4 + x 2 x 3 x 4 ) 1 − ( x 1 x 2 + x 1 x 3 + x 1 x 4 + x 2 x 3 + x 2 x 4 + x 3 x 4 ) + ( x 1 x 2 x 3 x 4 ) , {\displaystyle {\begin{aligned}\tan(\theta _{1}+\theta _{2}+\theta _{3})&{}={\frac {e_{1}-e_{3}}{e_{0}-e_{2}}}={\frac {(x_{1}+x_{2}+x_{3})\ -\ (x_{1}x_{2}x_{3})}{1\ -\ (x_{1}x_{2}+x_{1}x_{3}+x_{2}x_{3})}},\\\\\tan(\theta _{1}+\theta _{2}+\theta _{3}+\theta _{4})&{}={\frac {e_{1}-e_{3}}{e_{0}-e_{2}+e_{4}}}\\\\&{}={\frac {(x_{1}+x_{2}+x_{3}+x_{4})\ -\ (x_{1}x_{2}x_{3}+x_{1}x_{2}x_{4}+x_{1}x_{3}x_{4}+x_{2}x_{3}x_{4})}{1\ -\ (x_{1}x_{2}+x_{1}x_{3}+x_{1}x_{4}+x_{2}x_{3}+x_{2}x_{4}+x_{3}x_{4})\ +\ (x_{1}x_{2}x_{3}x_{4})}},\end{aligned}}} 并以此类推。一般情况可通过数学归纳法证明。 Remove ads多倍角公式 更多信息 , 是 ... T n {\displaystyle T_{n}} 是 n {\displaystyle n} 次切比雪夫多项式 cos  n θ = T n cos  θ {\displaystyle \cos n\theta =T_{n}\cos \theta \,} S n {\displaystyle S_{n}} 是 n {\displaystyle n} 次伸展多项式 sin 2  n θ = S n sin 2  θ {\displaystyle \sin ^{2}n\theta =S_{n}\sin ^{2}\theta \,} 棣莫弗定理, i {\displaystyle i} 是虚单位 cos  n θ + i sin  n θ = ( cos  θ + i sin  θ ) n {\displaystyle \cos n\theta +i\sin n\theta =(\cos \theta +i\sin \theta )^{n}\,} 关闭 1 + 2 cos  x + 2 cos  2 x + 2 cos  3 x + ⋯ + 2 cos  ( n x ) = sin  [ ( n + 1 2 ) x ] sin  x 2 {\displaystyle 1+2\cos x+2\cos 2x+2\cos 3x+\cdots +2\cos(nx)={\frac {\sin \left[\left(n+{\frac {1}{2}}\right)x\right]}{\sin {\frac {x}{2}}}}} 。 (这个 x {\displaystyle x} 的函数是狄利克雷核。) Remove ads双倍角、三倍角和半角公式 这些公式可以使用和差恒等式或多倍角公式来证明。 更多信息 , ... 弦 切 割 双倍角公式 正 sin  2 θ = 2 sin  θ cos  θ = 2 tan  θ 1 + tan 2  θ {\displaystyle {\begin{aligned}\sin 2\theta &=2\sin \theta \cos \theta \ \\&={\frac {2\tan \theta }{1+\tan ^{2}\theta }}\end{aligned}}} tan  2 θ = 2 tan  θ 1 − tan 2  θ = 1 1 − tan  θ − 1 1 + tan  θ {\displaystyle {\begin{aligned}\tan 2\theta &={\frac {2\tan \theta }{1-\tan ^{2}\theta }}\ \\&={\frac {1}{1-\tan \theta }}-{\frac {1}{1+\tan \theta }}\end{aligned}}} sec  2 θ = sec 2  θ 1 − tan 2  θ = sec 2  θ 2 − sec 2  θ {\displaystyle {\begin{aligned}\sec 2\theta &={\frac {\sec ^{2}\theta }{1-\tan ^{2}\theta }}\\&={\frac {\sec ^{2}\theta }{2-\sec ^{2}\theta }}\end{aligned}}} 馀 cos  2 θ = cos 2  θ − sin 2  θ = 2 cos 2  θ − 1 = 1 − 2 sin 2  θ = 1 − tan 2  θ 1 + tan 2  θ {\displaystyle {\begin{aligned}\cos 2\theta &=\cos ^{2}\theta -\sin ^{2}\theta \\&=2\cos ^{2}\theta -1\\&=1-2\sin ^{2}\theta \\&={\frac {1-\tan ^{2}\theta }{1+\tan ^{2}\theta }}\end{aligned}}} cot  2 θ = cot 2  θ − 1 2 cot  θ = cot  θ − tan  θ 2 {\displaystyle {\begin{aligned}\cot 2\theta &={\frac {\cot ^{2}\theta -1}{2\cot \theta }}\\&={\frac {\cot \theta -\tan \theta }{2}}\end{aligned}}} csc  2 θ = csc 2  θ 2 cot  θ = sec  θ csc  θ 2 {\displaystyle {\begin{aligned}\csc 2\theta &={\frac {\csc ^{2}\theta }{2\cot \theta }}\\&={\frac {\sec \theta \csc \theta }{2}}\end{aligned}}} 降次公式 正 sin 2  θ = 1 − cos  2 θ 2 {\displaystyle \sin ^{2}\theta ={\frac {1-\cos 2\theta }{2}}} tan 2  θ = 1 − cos  2 θ 1 + cos  2 θ {\displaystyle \tan ^{2}\theta ={\frac {1-\cos 2\theta }{1+\cos 2\theta }}} 馀 cos 2  θ = 1 + cos  2 θ 2 {\displaystyle \cos ^{2}\theta ={\frac {1+\cos 2\theta }{2}}} cot 2  θ = 1 + cos  2 θ 1 − cos  2 θ {\displaystyle \cot ^{2}\theta ={\frac {1+\cos 2\theta }{1-\cos 2\theta }}} 三倍角公式 正 sin  3 θ = 3 sin  θ − 4 sin 3  θ = 4 sin  θ sin  ( π 3 − θ ) sin  ( π 3 + θ ) {\displaystyle {\begin{aligned}\sin 3\theta &=3\sin \theta -4\sin ^{3}\theta \\&=4\sin \theta \sin \left({\frac {\pi }{3}}-\theta \right)\sin \left({\frac {\pi }{3}}+\theta \right)\end{aligned}}} tan  3 θ = 3 tan  θ − tan 3  θ 1 − 3 tan 2  θ = tan  θ tan  ( π 3 − θ ) tan  ( π 3 + θ ) {\displaystyle {\begin{aligned}\tan 3\theta &={\frac {3\tan \theta -\tan ^{3}\theta }{1-3\tan ^{2}\theta }}\\&=\tan \theta \tan \left({\frac {\pi }{3}}-\theta \right)\tan \left({\frac {\pi }{3}}+\theta \right)\end{aligned}}} sec  3 θ = sec 3  θ 4 − 3 sec 2  θ = 1 4 cos  θ cos  ( π 3 − θ ) cos  ( π 3 + θ ) {\displaystyle {\begin{aligned}\sec 3\theta &={\frac {\sec ^{3}\theta }{4-3\sec ^{2}\theta }}\\&={\dfrac {1}{4\cos \theta \cos \left({\dfrac {\pi }{3}}-\theta \right)\cos \left({\dfrac {\pi }{3}}+\theta \right)}}\end{aligned}}} 馀 cos  3 θ = 4 cos 3  θ − 3 cos  θ = 4 cos  θ cos  ( π 3 − θ ) cos  ( π 3 + θ ) {\displaystyle {\begin{aligned}\cos 3\theta &=4\cos ^{3}\theta -3\cos \theta \\&=4\cos \theta \cos \left({\frac {\pi }{3}}-\theta \right)\cos \left({\frac {\pi }{3}}+\theta \right)\end{aligned}}} cot  3 θ = cot 3  θ − 3 cot  θ 3 cot 2  θ − 1 = cot  θ cot  ( π 3 − θ ) cot  ( π 3 + θ ) {\displaystyle {\begin{aligned}\cot 3\theta &={\frac {\cot ^{3}\theta -3\cot \theta }{3\cot ^{2}\theta -1}}\\&=\cot \theta \cot \left({\frac {\pi }{3}}-\theta \right)\cot \left({\frac {\pi }{3}}+\theta \right)\end{aligned}}} csc  3 θ = csc 3  θ 3 csc 2  θ − 4 = 1 4 sin  θ sin  ( π 3 − θ ) sin  ( π 3 + θ ) {\displaystyle {\begin{aligned}\csc 3\theta &={\frac {\csc ^{3}\theta }{3\csc ^{2}\theta -4}}\\&={\dfrac {1}{4\sin \theta \sin \left({\dfrac {\pi }{3}}-\theta \right)\sin \left({\dfrac {\pi }{3}}+\theta \right)}}\end{aligned}}} 半角公式 正 sin  θ 2 = ± 1 − cos  θ 2 {\displaystyle \sin {\frac {\theta }{2}}=\pm \,{\sqrt {\frac {1-\cos \theta }{2}}}} tan  θ 2 = csc  θ − cot  θ = ± 1 − cos  θ 1 + cos  θ = sin  θ 1 + cos  θ = 1 − cos  θ sin  θ = cos  θ + sin  θ − 1 cos  θ − sin  θ + 1 = cot 2  θ + 1 − cot  θ {\displaystyle {\begin{aligned}\tan {\frac {\theta }{2}}&=\csc \theta -\cot \theta \\&=\pm \,{\sqrt {1-\cos \theta \over 1+\cos \theta }}\\&={\frac {\sin \theta }{1+\cos \theta }}\\&={\frac {1-\cos \theta }{\sin \theta }}\\&={\frac {\cos \theta +\sin \theta -1}{\cos \theta -\sin \theta +1}}\\&={\sqrt {\cot ^{2}\theta +1}}-\cot \theta \end{aligned}}} sec  θ 2 = ± 2 sec  θ sec  θ + 1 {\displaystyle \sec {\frac {\theta }{2}}=\pm \,{\sqrt {\frac {2\sec \theta }{\sec \theta +1}}}} 馀 cos  θ 2 = ± 1 + cos  θ 2 {\displaystyle \cos {\frac {\theta }{2}}=\pm \,{\sqrt {\frac {1+\cos \theta }{2}}}} cot  θ 2 = csc  θ + cot  θ = ± 1 + cos  θ 1 − cos  θ = sin  θ 1 − cos  θ = 1 + cos  θ sin  θ = cos  θ − sin  θ + 1 cos  θ + sin  θ − 1 = cot 2  θ + 1 + cot  θ {\displaystyle {\begin{aligned}\cot {\frac {\theta }{2}}&=\csc \theta +\cot \theta \\&=\pm \,{\sqrt {1+\cos \theta \over 1-\cos \theta }}\\&={\frac {\sin \theta }{1-\cos \theta }}\\&={\frac {1+\cos \theta }{\sin \theta }}\\&={\frac {\cos \theta -\sin \theta +1}{\cos \theta +\sin \theta -1}}\\&={\sqrt {\cot ^{2}\theta +1}}+\cot \theta \end{aligned}}} csc  θ 2 = ± 2 sec  θ sec  θ − 1 {\displaystyle \csc {\frac {\theta }{2}}=\pm \,{\sqrt {\frac {2\sec \theta }{\sec \theta -1}}}} 关闭 Remove adsn倍角公式 更多信息 , ... n {\displaystyle n} 倍角公式 sin  n θ = ∑ k = 0 n ( n k ) cos k  θ sin n − k  θ sin  [ 1 2 ( n − k ) π ] = sin  θ ∑ k = 0 ⌊ n − 1 2 ⌋ ( − 1 ) k ( n − 1 − k k ) ( 2 cos  θ ) n − 1 − 2 k {\displaystyle \sin n\theta =\sum _{k=0}^{n}{\binom {n}{k}}\cos ^{k}\theta \,\sin ^{n-k}\theta \,\sin \left[{\frac {1}{2}}(n-k)\pi \right]=\sin \theta \sum _{k=0}^{\lfloor {\frac {n-1}{2}}\rfloor }(-1)^{k}{\binom {n-1-k}{k}}~(2\cos \theta )^{n-1-2k}} (第二类切比雪夫多项式) cos  n θ = ∑ k = 0 n ( n k ) cos k  θ sin n − k  θ cos  [ 1 2 ( n − k ) π ] = 1 2 ∑ k = 0 ⌊ n 2 ⌋ ( − 1 ) k n n − k ( n − k k ) ( 2 cos  θ ) n − 2 k {\displaystyle \cos n\theta =\sum _{k=0}^{n}{\binom {n}{k}}\cos ^{k}\theta \,\sin ^{n-k}\theta \,\cos \left[{\frac {1}{2}}(n-k)\pi \right]={\frac {1}{2}}\sum _{k=0}^{\lfloor {\frac {n}{2}}\rfloor }(-1)^{k}{\frac {n}{n-k}}{\binom {n-k}{k}}~(2\cos \theta )^{n-2k}} (第一类切比雪夫多项式) tan  n θ = ∑ k = 1 [ n 2 ] ( − 1 ) k + 1 ( n 2 k − 1 ) tan 2 k − 1  θ ∑ k = 1 [ n + 1 2 ] ( − 1 ) k + 1 ( n 2 ( k − 1 ) ) tan 2 ( k − 1 )  θ {\displaystyle \tan n\theta ={\frac {\displaystyle \sum _{k=1}^{\left[{\frac {n}{2}}\right]}(-1)^{k+1}{\binom {n}{2k-1}}\tan ^{2k-1}\theta }{\displaystyle \sum _{k=1}^{\left[{\frac {n+1}{2}}\right]}(-1)^{k+1}{\binom {n}{2(k-1)}}\tan ^{2(k-1)}\theta }}} n {\displaystyle n} 倍递回公式 tan n θ = tan  ( n − 1 ) θ + tan  θ 1 − tan  ( n − 1 ) θ tan  θ {\displaystyle \tan \,n\theta ={\frac {\tan(n{-}1)\theta +\tan \theta }{1-\tan(n{-}1)\theta \,\tan \theta }}} 、 cot n θ = cot  ( n − 1 ) θ cot  θ − 1 cot  ( n − 1 ) θ + cot  θ {\displaystyle \cot \,n\theta ={\frac {\cot(n{-}1)\theta \,\cot \theta -1}{\cot(n{-}1)\theta +\cot \theta }}} 。(递回关系) 关闭 参见正切半角公式,它也叫做“万能公式”。 其他函数的倍半角公式 正矢 versin  2 θ = 2 sin 2  θ = ( sin  2 θ ) ( sin  θ ) cos  θ = 1 − cos  2 θ {\displaystyle \operatorname {versin} 2\theta =2\sin ^{2}\theta ={\frac {(\sin 2\theta )(\sin \theta )}{\cos \theta }}=1-\cos 2\theta } 馀矢 cvs  2 θ = ( sin  θ − cos  θ ) 2 = 1 − sin  2 θ {\displaystyle \operatorname {cvs} 2\theta =(\sin \theta -\cos \theta )^{2}=1-\sin 2\theta } 幂简约公式 从解余弦二倍角公式的第二和第三版本得到。 更多信息 , ... 正弦 馀弦 其他 sin 2  θ = 1 − cos  2 θ 2 {\displaystyle \sin ^{2}\theta ={\frac {1-\cos 2\theta }{2}}} cos 2  θ = 1 + cos  2 θ 2 {\displaystyle \cos ^{2}\theta ={\frac {1+\cos 2\theta }{2}}} sin 2  θ cos 2  θ = 1 − cos  4 θ 8 {\displaystyle \sin ^{2}\theta \cos ^{2}\theta ={\frac {1-\cos 4\theta }{8}}} sin 3  θ = 3 sin  θ − sin  3 θ 4 {\displaystyle \sin ^{3}\theta ={\frac {3\sin \theta -\sin 3\theta }{4}}} cos 3  θ = 3 cos  θ + cos  3 θ 4 {\displaystyle \cos ^{3}\theta ={\frac {3\cos \theta +\cos 3\theta }{4}}} sin 3  θ cos 3  θ = 3 sin  2 θ − sin  6 θ 32 {\displaystyle \sin ^{3}\theta \cos ^{3}\theta ={\frac {3\sin 2\theta -\sin 6\theta }{32}}} sin 4  θ = 3 − 4 cos  2 θ + cos  4 θ 8 {\displaystyle \sin ^{4}\theta ={\frac {3-4\cos 2\theta +\cos 4\theta }{8}}} cos 4  θ = 3 + 4 cos  2 θ + cos  4 θ 8 {\displaystyle \cos ^{4}\theta ={\frac {3+4\cos 2\theta +\cos 4\theta }{8}}} sin 4  θ cos 4  θ = 3 − 4 cos  4 θ + cos  8 θ 128 {\displaystyle \sin ^{4}\theta \cos ^{4}\theta ={\frac {3-4\cos 4\theta +\cos 8\theta }{128}}} sin 5  θ = 10 sin  θ − 5 sin  3 θ + sin  5 θ 16 {\displaystyle \sin ^{5}\theta ={\frac {10\sin \theta -5\sin 3\theta +\sin 5\theta }{16}}} cos 5  θ = 10 cos  θ + 5 cos  3 θ + cos  5 θ 16 {\displaystyle \cos ^{5}\theta ={\frac {10\cos \theta +5\cos 3\theta +\cos 5\theta }{16}}} sin 5  θ cos 5  θ = 10 sin  2 θ − 5 sin  6 θ + sin  10 θ 512 {\displaystyle \sin ^{5}\theta \cos ^{5}\theta ={\frac {10\sin 2\theta -5\sin 6\theta +\sin 10\theta }{512}}} 关闭 更多信息 如果 ... 馀弦 正弦 如果 n {\displaystyle n} 是奇数 cos n  θ = 2 2 n ∑ k = 0 n − 1 2 ( n k ) cos  [ ( n − 2 k ) θ ] {\displaystyle \cos ^{n}\theta ={\frac {2}{2^{n}}}\sum _{k=0}^{\frac {n-1}{2}}{\binom {n}{k}}\cos {[(n-2k)\theta ]}} sin n  θ = 2 2 n ∑ k = 0 n − 1 2 ( − 1 ) ( n − 1 2 − k ) ( n k ) sin  [ ( n − 2 k ) θ ] {\displaystyle \sin ^{n}\theta ={\frac {2}{2^{n}}}\sum _{k=0}^{\frac {n-1}{2}}(-1)^{\left({\frac {n-1}{2}}-k\right)}{\binom {n}{k}}\sin {[(n-2k)\theta ]}} 如果 n {\displaystyle n} 是偶数 cos n  θ = 1 2 n ( n n 2 ) + 2 2 n ∑ k = 0 n 2 − 1 ( n k ) cos  [ ( n − 2 k ) θ ] {\displaystyle \cos ^{n}\theta ={\frac {1}{2^{n}}}{\binom {n}{\frac {n}{2}}}+{\frac {2}{2^{n}}}\sum _{k=0}^{{\frac {n}{2}}-1}{\binom {n}{k}}\cos {[(n-2k)\theta ]}} sin n  θ = 1 2 n ( n n 2 ) + 2 2 n ∑ k = 0 n 2 − 1 ( − 1 ) ( n 2 − k ) ( n k ) cos  [ ( n − 2 k ) θ ] {\displaystyle \sin ^{n}\theta ={\frac {1}{2^{n}}}{\binom {n}{\frac {n}{2}}}+{\frac {2}{2^{n}}}\sum _{k=0}^{{\frac {n}{2}}-1}(-1)^{\left({\frac {n}{2}}-k\right)}{\binom {n}{k}}\cos {[(n-2k)\theta ]}} 关闭 数值连乘 ∏ k = 0 n − 1 cos  2 k θ = sin  2 n θ 2 n sin  θ {\displaystyle \prod _{k=0}^{n-1}\cos 2^{k}\theta ={\frac {\sin 2^{n}\theta }{2^{n}\sin \theta }}} [2] ∏ k = 0 n − 1 sin  ( x + k π n ) = sin  n x 2 n − 1 {\displaystyle \prod _{k=0}^{n-1}\sin \left(x+{\frac {k\pi }{n}}\right)={\frac {\sin nx}{2^{n-1}}}} [2] ∏ k = 1 n − 1 sin  ( k π n ) = n 2 n − 1 {\displaystyle \prod _{k=1}^{n-1}\sin \left({\frac {k\pi }{n}}\right)={\frac {n}{2^{n-1}}}} , ∏ k = 1 n − 1 sin  ( k π 2 n ) = n 2 n − 1 {\displaystyle \prod _{k=1}^{n-1}\sin \left({\frac {k\pi }{2n}}\right)={\frac {\sqrt {n}}{2^{n-1}}}} , ∏ k = 1 n sin  ( k π 2 n + 1 ) = 2 n + 1 2 n {\displaystyle \prod _{k=1}^{n}\sin \left({\frac {k\pi }{2n+1}}\right)={\frac {\sqrt {2n+1}}{2^{n}}}} ∏ k = 1 n − 1 cos  ( k π n ) = sin  n π 2 2 n − 1 {\displaystyle \prod _{k=1}^{n-1}\cos \left({\frac {k\pi }{n}}\right)={\frac {\sin {\frac {n\pi }{2}}}{2^{n-1}}}} , ∏ k = 1 n − 1 cos  ( k π 2 n ) = n 2 n − 1 {\displaystyle \prod _{k=1}^{n-1}\cos \left({\frac {k\pi }{2n}}\right)={\frac {\sqrt {n}}{2^{n-1}}}} , ∏ k = 1 n cos  ( k π 2 n + 1 ) = 1 2 n {\displaystyle \prod _{k=1}^{n}\cos \left({\frac {k\pi }{2n+1}}\right)={\frac {1}{2^{n}}}} ∏ k = 1 n − 1 tan  ( k π n ) = n sin  n π 2 {\displaystyle \prod _{k=1}^{n-1}\tan \left({\frac {k\pi }{n}}\right)={\frac {n}{\sin {\frac {n\pi }{2}}}}} , ∏ k = 1 n − 1 tan  ( k π 2 n ) = 1 {\displaystyle \prod _{k=1}^{n-1}\tan \left({\frac {k\pi }{2n}}\right)=1} , ∏ k = 1 n tan  k π 2 n + 1 = 2 n + 1 {\displaystyle \prod _{k=1}^{n}\tan {\frac {k\pi }{2n+1}}={\sqrt {2n+1}}} 常见的恒等式 积化和差与和差化积恒等式 数学家韦达在其三角学著作《应用于三角形的数学定律》给出积化和差与和差化积恒等式。积化和差恒等式可以通过展开角的和差恒等式的右手端来证明。 更多信息 , ... 积化和差 和差化积 sin  α cos  β = sin  ( α + β ) + sin  ( α − β ) 2 {\displaystyle \sin \alpha \cos \beta ={\sin(\alpha +\beta )+\sin(\alpha -\beta ) \over 2}} sin  α + sin  β = 2 sin  α + β 2 cos  α − β 2 {\displaystyle \sin \alpha +\sin \beta =2\sin {\frac {\alpha +\beta }{2}}\cos {\frac {\alpha -\beta }{2}}} cos  α sin  β = sin  ( α + β ) − sin  ( α − β ) 2 {\displaystyle \cos \alpha \sin \beta ={\sin(\alpha +\beta )-\sin(\alpha -\beta ) \over 2}} sin  α − sin  β = 2 cos  α + β 2 sin  α − β 2 {\displaystyle \sin \alpha -\sin \beta =2\cos {\alpha +\beta \over 2}\sin {\alpha -\beta \over 2}} cos  α cos  β = cos  ( α + β ) + cos  ( α − β ) 2 {\displaystyle \cos \alpha \cos \beta ={\cos(\alpha +\beta )+\cos(\alpha -\beta ) \over 2}} cos  α + cos  β = 2 cos  α + β 2 cos  α − β 2 {\displaystyle \cos \alpha +\cos \beta =2\cos {\frac {\alpha +\beta }{2}}\cos {\frac {\alpha -\beta }{2}}} sin  α sin  β = − cos  ( α + β ) − cos  ( α − β ) 2 {\displaystyle \sin \alpha \sin \beta =-{\cos(\alpha +\beta )-\cos(\alpha -\beta ) \over 2}} cos  α − cos  β = − 2 sin  α + β 2 sin  α − β 2 {\displaystyle \cos \alpha -\cos \beta =-2\sin {\alpha +\beta \over 2}\sin {\alpha -\beta \over 2}} 关闭 平方差公式 sin  ( x + y ) sin  ( x − y ) = sin 2  x − sin 2  y = cos 2  y − cos 2  x {\displaystyle \sin(x+y)\sin(x-y)=\sin ^{2}{x}-\sin ^{2}{y}=\cos ^{2}{y}-\cos ^{2}{x}\,} cos  ( x + y ) cos  ( x − y ) = cos 2  x − sin 2  y = cos 2  y − sin 2  x {\displaystyle \cos(x+y)\cos(x-y)=\cos ^{2}{x}-\sin ^{2}{y}=\cos ^{2}{y}-\sin ^{2}{x}\,} (可借由积化和差公式+2倍角公式推导而来) 其他恒等式 如果 x + y + z = n π {\displaystyle x+y+z=n\pi } , 那么 tan  x + tan  y + tan  z = tan  x tan  y tan  z {\displaystyle \tan x+\tan y+\tan z=\tan x\tan y\tan z} cot  x cot  y + cot  y cot  z + cot  z cot  x = 1 {\displaystyle \cot x\cot y+\cot y\cot z+\cot z\cot x=1} 如果 x + y + z = n π + π 2 {\displaystyle x+y+z=n\pi +{\frac {\pi }{2}}} , 那么 tan  x tan  y + tan  y tan  z + tan  z tan  x = 1 {\displaystyle \tan x\tan y+\tan y\tan z+\tan z\tan x=1} cot  x + cot  y + cot  z = cot  x cot  y cot  z {\displaystyle \cot x+\cot y+\cot z=\cot x\cot y\cot z} 如果 x + y + z = π {\displaystyle x+y+z=\pi } , 那么 sin  2 x + sin  2 y + sin  2 z = 4 sin  x sin  y sin  z {\displaystyle \sin 2x+\sin 2y+\sin 2z=4\sin x\sin y\sin z} sin  x + sin  y + sin  z = 4 cos  x 2 cos  y 2 cos  z 2 {\displaystyle \sin x+\sin y+\sin z=4\cos {\frac {x}{2}}\cos {\frac {y}{2}}\cos {\frac {z}{2}}} cos  x + cos  y + cos  z = 1 + 4 sin  x 2 sin  y 2 sin  z 2 {\displaystyle \cos x+\cos y+\cos z=1+4\sin {\frac {x}{2}}\sin {\frac {y}{2}}\sin {\frac {z}{2}}} 托勒密定理 如果 w + x + y + z = π {\displaystyle w+x+y+z=\pi } (半圆) 那么: sin  ( w + x ) sin  ( x + y ) = sin  ( x + y ) sin  ( y + z ) = sin  ( y + z ) sin  ( z + w ) = sin  ( z + w ) sin  ( w + x ) = sin  w sin  y + sin  x sin  z {\displaystyle {\begin{aligned}\sin(w+x)\sin(x+y)&=\sin(x+y)\sin(y+z)\\&=\sin(y+z)\sin(z+w)\\&{}=\sin(z+w)\sin(w+x)\\&{}=\sin w\sin y+\sin x\sin z\end{aligned}}} (前三个等式是一般情况;第四个是本质。) 三角函数与双曲函数的恒等式 利用三角恒等式的指数定义和双曲函数的指数定义即可求出下列恒等式: e i x = cos  x + i sin  x , e − i x = cos  x − i sin  x {\displaystyle e^{ix}=\cos x+i\;\sin x,\;e^{-ix}=\cos x-i\;\sin x} e x = cosh  x + sinh  x , e − x = cosh  x − sinh  x {\displaystyle e^{x}=\cosh x+\sinh x\!,\;e^{-x}=\cosh x-\sinh x\!} 所以 cosh  i x = 1 2 ( e i x + e − i x ) = cos  x {\displaystyle \cosh ix={\tfrac {1}{2}}(e^{ix}+e^{-ix})=\cos x} sinh  i x = 1 2 ( e i x − e − i x ) = i sin  x {\displaystyle \sinh ix={\tfrac {1}{2}}(e^{ix}-e^{-ix})=i\sin x} 下表列出部分的三角函数与双曲函数的恒等式: 更多信息 , ... 三角函数 双曲函数 sin  θ = − i sinh  i θ {\displaystyle \sin \theta =-i\sinh {i\theta }\,} sinh  θ = i sin  ( − i θ ) {\displaystyle \sinh {\theta }=i\sin {(-i\theta )}\,} cos  θ = cosh  i θ {\displaystyle \cos {\theta }=\cosh {i\theta }\,} cosh  θ = cos  ( − i θ ) {\displaystyle \cosh {\theta }=\cos {(-i\theta )}\,} tan  θ = − i tanh  i θ {\displaystyle \tan \theta =-i\tanh {i\theta }\,} tanh  θ = i tan  ( − i θ ) {\displaystyle \tanh {\theta }=i\tan {(-i\theta )}\,} cot  θ = i coth  i θ {\displaystyle \cot {\theta }=i\coth {i\theta }\,} coth  θ = − i cot  ( − i θ ) {\displaystyle \coth \theta =-i\cot {(-i\theta )}\,} sec  θ = sech  i θ {\displaystyle \sec {\theta }=\operatorname {sech} {\,i\theta }\,} sech  θ = sec  ( − i θ ) {\displaystyle \operatorname {sech} {\theta }=\sec {(-i\theta )}\,} csc  θ = i csch  i θ {\displaystyle \csc {\theta }=i\;\operatorname {csch} {\,i\theta }\,} csch  θ = − i csc  ( − i θ ) {\displaystyle \operatorname {csch} \theta =-i\csc {(-i\theta )}\,} 关闭 其他恒等式: cosh  i x = 1 2 ( e i x + e − i x ) = cos  x {\displaystyle \cosh ix={\tfrac {1}{2}}(e^{ix}+e^{-ix})=\cos x} sinh  i x = 1 2 ( e i x − e − i x ) = i sin  x {\displaystyle \sinh ix={\tfrac {1}{2}}(e^{ix}-e^{-ix})=i\sin x} cosh  ( x + i y ) = cosh  ( x ) cos  ( y ) + i sinh  ( x ) sin  ( y ) {\displaystyle \cosh(x+iy)=\cosh(x)\cos(y)+i\sinh(x)\sin(y)\,} sinh  ( x + i y ) = sinh  ( x ) cos  ( y ) + i cosh  ( x ) sin  ( y ) {\displaystyle \sinh(x+iy)=\sinh(x)\cos(y)+i\cosh(x)\sin(y)\,} tanh  i x = i tan  x {\displaystyle \tanh ix=i\tan x\,} cosh  x = cos  i x {\displaystyle \cosh x=\cos ix\,} sinh  x = − i sin  i x {\displaystyle \sinh x=-i\sin ix\,} tanh  x = − i tan  i x {\displaystyle \tanh x=-i\tan ix\,} 线性组合 对于某些用途,知道同样周期但不同相位移动的正弦波的任何线性组合是有相同周期但不同相位移动的正弦波是重要的。在正弦和余弦波的线性组合的情况下,我们有 a sin  x + b cos  x = a 2 + b 2 ⋅ sin  ( x + φ ) ( a > 0 ) {\displaystyle a\sin x+b\cos x={\sqrt {a^{2}+b^{2}}}\cdot \sin(x+\varphi )\;(a>0)} 这里的 φ = arctan  ( b a ) {\displaystyle \varphi =\arctan \left({\frac {b}{a}}\right)} 这个公式也叫辅助角公式或李善兰公式。更一般的说,对于任何相位移动,我们有 a sin  x + b sin  ( x + α ) = c sin  ( x + β ) ( a + b cos  x > 0 ) {\displaystyle a\sin x+b\sin(x+\alpha )=c\sin(x+\beta )\;(a+b\cos x>0)} 这里 c = a 2 + b 2 + 2 a b cos  α , {\displaystyle c={\sqrt {a^{2}+b^{2}+2ab\cos \alpha }},} 而 β = arctan  ( b sin  α a + b cos  α ) {\displaystyle \beta =\arctan \left({\frac {b\sin \alpha }{a+b\cos \alpha }}\right)} 反三角函数 主条目:反三角函数 arcsin  x + arccos  x = π 2 {\displaystyle \arcsin x+\arccos x={\frac {\pi }{2}}\;} arctan  x + arccot  x = π 2 . {\displaystyle \arctan x+\operatorname {arccot} x={\frac {\pi }{2}}.\;} arctan  x + arctan  1 x = { π 2 , if x > 0 − π 2 , if x < 0 {\displaystyle \arctan x+\arctan {\frac {1}{x}}=\left\{{\begin{matrix}{\frac {\pi }{2}},&{\mbox{if }}x>0\\-{\frac {\pi }{2}},&{\mbox{if }}x<0\end{matrix}}\right.} arctan  x + arctan  y = arctan  x + y 1 − x y + { π , if x , y > 0 − π , if x , y < 0 0 , otherwise {\displaystyle \arctan x+\arctan y=\arctan {\frac {x+y}{1-xy}}+\left\{{\begin{matrix}\pi ,&{\mbox{if }}x,y>0\\-\pi ,&{\mbox{if }}x,y<0\\0,&{\mbox{otherwise }}\end{matrix}}\right.} sin  ( arccos  x ) = 1 − x 2 {\displaystyle \sin(\arccos x)={\sqrt {1-x^{2}}}\,} sin  ( arctan  x ) = x 1 + x 2 {\displaystyle \sin(\arctan x)={\frac {x}{\sqrt {1+x^{2}}}}} cos  ( arctan  x ) = 1 1 + x 2 {\displaystyle \cos(\arctan x)={\frac {1}{\sqrt {1+x^{2}}}}} cos  ( arcsin  x ) = 1 − x 2 {\displaystyle \cos(\arcsin x)={\sqrt {1-x^{2}}}\,} tan  ( arcsin  x ) = x 1 − x 2 {\displaystyle \tan(\arcsin x)={\frac {x}{\sqrt {1-x^{2}}}}} tan  ( arccos  x ) = 1 − x 2 x {\displaystyle \tan(\arccos x)={\frac {\sqrt {1-x^{2}}}{x}}} 无限乘积公式 为了用于特殊函数,有下列三角函数无穷乘积公式[3][4]: sin  x = x ∏ n = 1 ∞ ( 1 − x 2 π 2 n 2 ) {\displaystyle \sin x=x\prod _{n=1}^{\infty }\left(1-{\frac {x^{2}}{\pi ^{2}n^{2}}}\right)} sinh  x = x ∏ n = 1 ∞ ( 1 + x 2 π 2 n 2 ) {\displaystyle \sinh x=x\prod _{n=1}^{\infty }\left(1+{\frac {x^{2}}{\pi ^{2}n^{2}}}\right)} sin  x x = ∏ n = 1 ∞ cos  ( x 2 n ) {\displaystyle {\frac {\sin x}{x}}=\prod _{n=1}^{\infty }\cos \left({\frac {x}{2^{n}}}\right)} cos  x = x ∏ n = 1 ∞ ( 1 − x 2 π 2 ( n − 1 2 ) 2 ) {\displaystyle \cos x=x\prod _{n=1}^{\infty }\left(1-{\frac {x^{2}}{\pi ^{2}(n-{\frac {1}{2}})^{2}}}\right)} cosh  x = ∏ n = 1 ∞ ( 1 + x 2 π 2 ( n − 1 2 ) 2 ) {\displaystyle \cosh x=\prod _{n=1}^{\infty }\left(1+{\frac {x^{2}}{\pi ^{2}(n-{\frac {1}{2}})^{2}}}\right)} | sin  x | = 1 2 ∏ n = 0 ∞ | tan  ( 2 n x ) | 2 n + 1 {\displaystyle |\sin x|={\frac {1}{2}}\prod _{n=0}^{\infty }{\sqrt[{2^{n+1}}]{\left|\tan \left(2^{n}x\right)\right|}}} 微积分 正弦的微分 由于技术原因,此旧版图表已停用,并须迁移至新版图表。造成您的不便,我们深表歉意。 正弦(蓝色)、正弦的微分(橘色),其中,正弦的微分正好是馀弦。 馀弦的微分 由于技术原因,此旧版图表已停用,并须迁移至新版图表。造成您的不便,我们深表歉意。 馀弦(蓝色)、馀弦的微分(橘色),其中,馀弦的微分正好是正弦的对x轴的镜射。 在微积分中,下面陈述的关系要求角用弧度来度量;如果用其他方式比如角度来这些关系会变得更加复杂。如果三角函数以几何的方式来定义,它们的导数可以通过验证两个极限而找到。第一个是: lim x → 0 sin  x x = 1 {\displaystyle \lim _{x\rightarrow 0}{\frac {\sin x}{x}}=1} 可以使用单位圆和夹挤定理来验证。如果用洛必达法则来证明这个极限,那也就用这个极限证明了正弦的导数是馀弦,并因此在应用洛必达法则中使用正弦的导数是馀弦的事实,就是逻辑谬论中的循环论证了。第二个极限是: lim x → 0 cos  x − 1 x = 0 {\displaystyle \lim _{x\rightarrow 0}{\frac {\cos x-1}{x}}=0} 使用恒等式 tan  x 2 = 1 − cos  x sin  x {\displaystyle \tan {\frac {x}{2}}=1-{\frac {\cos x}{\sin x}}} 验证。已经确立了这两个极限,你可以使用导数的极限定义和加法定理来证明 sin ′  x = cos  x {\displaystyle \sin 'x=\cos x} 和 cos ′  x = − sin  x {\displaystyle \cos 'x=-\sin x} 。如果正弦和馀弦函数用它们的泰勒级数来定义,则导数可以通过幂级数逐项微分得到。 d d x sin  ( x ) = cos  ( x ) {\displaystyle {d \over dx}\sin(x)=\cos(x)} 结果的三角函数可以使用上述恒等式和微分规则来做微分。 d d x sin  x = cos  x , d d x arcsin  x = 1 1 − x 2 d d x cos  x = − sin  x , d d x arccos  x = − 1 1 − x 2 d d x tan  x = sec 2  x , d d x arctan  x = 1 1 + x 2 d d x cot  x = − csc 2  x , d d x arccot  x = − 1 1 + x 2 d d x sec  x = tan  x sec  x , d d x arcsec  x = 1 | x | x 2 − 1 d d x csc  x = − csc  x cot  x , d d x arccsc  x = − 1 | x | x 2 − 1 {\displaystyle {\begin{aligned}{d \over dx}\sin x&=\cos x,&{d \over dx}\arcsin x&={1 \over {\sqrt {1-x^{2}}}}\\\\{d \over dx}\cos x&=-\sin x,&{d \over dx}\arccos x&=-{1 \over {\sqrt {1-x^{2}}}}\\\\{d \over dx}\tan x&=\sec ^{2}x,&{d \over dx}\arctan x&={1 \over 1+x^{2}}\\\\{d \over dx}\cot x&=-\csc ^{2}x,&{d \over dx}\operatorname {arccot} x&=-{1 \over 1+x^{2}}\\\\{d \over dx}\sec x&=\tan x\sec x,&{d \over dx}\operatorname {arcsec} x&={1 \over |x|{\sqrt {x^{2}-1}}}\\\\{d \over dx}\csc x&=-\csc x\cot x,&{d \over dx}\operatorname {arccsc} x&=-{1 \over |x|{\sqrt {x^{2}-1}}}\end{aligned}}} 在三角函数积分表中可以找到积分恒等式。 蕴涵 三角函数(正弦和馀弦)的微分是同样两个函数线性组合的事实在很多数学领域包括微分方程和傅立叶变换中是重要的基本原理。 指数定义 更多信息 , ... 函数 反函数 sin  θ = e i θ − e − i θ 2 i {\displaystyle \sin \theta ={\frac {e^{{i}\theta }-e^{-{i}\theta }}{2{i}}}\,} arcsin  x = − i ln  ( i x + 1 − x 2 ) {\displaystyle \arcsin x=-{i}\ln \left({i}x+{\sqrt {1-x^{2}}}\right)\,} cos  θ = e i θ + e − i θ 2 {\displaystyle \cos \theta ={\frac {e^{{i}\theta }+e^{-{i}\theta }}{2}}\,} arccos  x = − i ln  ( x + x 2 − 1 ) {\displaystyle \arccos x=-{i}\ln \left(x+{\sqrt {x^{2}-1}}\right)\,} tan  θ = e i θ − e − i θ i ( e i θ + e − i θ ) {\displaystyle \tan \theta ={\frac {e^{{i}\theta }-e^{-{i}\theta }}{{i}(e^{{i}\theta }+e^{-{i}\theta })}}\,} arctan  x = i 2 ln  ( i + x i − x ) {\displaystyle \arctan x={\frac {i}{2}}\ln \left({\frac {{i}+x}{{i}-x}}\right)\,} csc  θ = 2 i e i θ − e − i θ {\displaystyle \csc \theta ={\frac {2{i}}{e^{{i}\theta }-e^{-{i}\theta }}}\,} arccsc  x = − i ln  ( i x + 1 − 1 x 2 ) {\displaystyle \operatorname {arccsc} x=-{i}\ln \left({\tfrac {i}{x}}+{\sqrt {1-{\tfrac {1}{x^{2}}}}}\right)\,} sec  θ = 2 e i θ + e − i θ {\displaystyle \sec \theta ={\frac {2}{e^{{i}\theta }+e^{-{i}\theta }}}\,} arcsec  x = − i ln  ( 1 x + 1 − i x 2 ) {\displaystyle \operatorname {arcsec} x=-{i}\ln \left({\tfrac {1}{x}}+{\sqrt {1-{\tfrac {i}{x^{2}}}}}\right)\,} cot  θ = i ( e i θ + e − i θ ) e i θ − e − i θ {\displaystyle \cot \theta ={\frac {{i}(e^{{i}\theta }+e^{-{i}\theta })}{e^{{i}\theta }-e^{-{i}\theta }}}\,} arccot  x = i 2 ln  ( i − x i + x ) {\displaystyle \operatorname {arccot} x={\frac {i}{2}}\ln \left({\frac {{i}-x}{{i}+x}}\right)\,} cis θ = e i θ {\displaystyle \operatorname {cis} \,\theta =e^{{i}\theta }\,} arccis x = − i ln  x {\displaystyle \operatorname {arccis} \,x=-{i}\ln x\,} sinh  θ = e θ − e − θ 2 {\displaystyle \sinh \theta ={\frac {e^{\theta }-e^{-\theta }}{2}}\,} arcsinh x = ln  ( x ± x 2 + 1 ) {\displaystyle \operatorname {arcsinh} \,x=\ln \left(x\pm {\sqrt {x^{2}+1}}\right)\,} cosh  θ = e θ + e − θ 2 {\displaystyle \cosh \theta ={\frac {e^{\theta }+e^{-\theta }}{2}}\,} arccosh x = ln  ( x ± x 2 − 1 ) = ± ln  ( x + x 2 − 1 ) {\displaystyle \operatorname {arccosh} \,x=\ln \left(x\pm {\sqrt {x^{2}-1}}\right)=\pm \ln \left(x+{\sqrt {x^{2}-1}}\right)\,} tanh  θ = sinh  θ cosh  θ = e θ − e − θ e θ + e − θ {\displaystyle \tanh \theta ={\frac {\sinh \theta }{\cosh \theta }}={\frac {e^{\theta }-e^{-\theta }}{e^{\theta }+e^{-\theta }}}\,} arctanh x = 1 2 ln  ( 1 + x 1 − x ) {\displaystyle \operatorname {arctanh} \,x={\frac {1}{2}}\ln \left({\frac {1+x}{1-x}}\right)\,} 关闭 参见 余弦定理 三角函数 正弦定理 正切定理 中线长公式 角平分线长公式 双曲函数恒等式 三分之一角公式 注释 [注 1]由于欧拉公式的证明过程中使用了棣莫弗公式,而棣莫弗公式的证明过程中使用了和角公式,故使用欧拉公式证明和角公式会造成循环论证,故而此方法仅为检定方法,而非严谨的证明方法。对于类似方法也应注意甄别。 参考文献 Loading content...Loading content...Loading related searches...Wikiwand - on Seamless Wikipedia browsing. On steroids.Remove ads