Chi 函数定义如下[1][2] Chi(x) 2D plot Chi(x) 3D plot C h i ( z ) = ∫ 0 z cosh ( t ) t d t {\displaystyle {\it {Chi}}\left(z\right)=\int _{0}^{z}\!{\frac {\cosh \left(t\right)}{t}}{dt}} C h i ( z ) {\displaystyle Chi(z)} 是下列三阶非线性常微分方程的一个解: z d d z w ( z ) − 2 d 2 d z 2 w ( z ) − z d 3 d z 3 w ( z ) = 0 {\displaystyle z{\frac {d}{dz}}w\left(z\right)-2\,{\frac {d^{2}}{d{z}^{2}}}w\left(z\right)-z{\frac {d^{3}}{d{z}^{3}}}w\left(z\right)=0} 即: w ( z ) = _ C 1 + _ C 2 C h i ( z ) + _ C 3 S h i ( z ) {\displaystyle w\left(z\right)={\it {\_C1}}+{\it {\_C2}}\,{\it {Chi}}\left(z\right)+{\it {\_C3}}\,{\it {Shi}}\left(z\right)} Remove ads对称性 C h i ( − z ) = C h i ( z ) {\displaystyle Chi(-z)=Chi(z)} 表示为其他特殊函数 Meijer G函数 {\displaystyle } − 1 2 π G 1 , 3 2 , 0 ( − 1 / 4 z 2 | 0 , 0 , 1 / 2 1 ) − 1 / 2 i π {\displaystyle {\frac {-1}{2}}\,{\sqrt {\pi }}G_{1,3}^{2,0}\left(-1/4\,{z}^{2}\,{\Big \vert }\,_{0,0,1/2}^{1}\right)-1/2\,i\pi } 超几何函数 C h i ( z ) = z ∗ 1 F 2 ( 1 , 1 ; 3 / 2 , 2 , 2 ; ( 1 / 4 ) ∗ z 2 ) {\displaystyle Chi(z)=z*_{1}F_{2}(1,1;3/2,2,2;(1/4)*z^{2})} Remove ads级数展 C h i ( z ) = ( γ + ln ( z ) + 1 4 z 2 + 1 96 z 4 + 1 4320 z 6 + 1 322560 z 8 + 1 36288000 z 10 + 1 5748019200 z 12 + 1 1220496076800 z 14 + O ( z 16 ) ) {\displaystyle {\it {Chi}}\left(z\right)=(\gamma +\ln \left(z\right)+{\frac {1}{4}}{z}^{2}+{\frac {1}{96}}{z}^{4}+{\frac {1}{4320}}{z}^{6}+{\frac {1}{322560}}{z}^{8}+{\frac {1}{36288000}}{z}^{10}+{\frac {1}{5748019200}}{z}^{12}+{\frac {1}{1220496076800}}{z}^{14}+O\left({z}^{16}\right))} 图集 Chi(x) Re complex 3D plot Chi(x) Im complex 3D plot Chi(x) abs complex 3D plot Chi(x) abs complex density plot Chi(x) Re complex density plot Chi(x) Im complex density plot 参见 Sinhc函数 Coshc函数 Tanc函数 Tanhc函数 Shi函数 参考文献Loading content...Loading related searches...Wikiwand - on Seamless Wikipedia browsing. On steroids.Remove ads