热门问题
时间线
聊天
视角

馬丁公理

来自维基百科,自由的百科全书

Remove ads

數學集合論中,馬丁公理(Martin's axiom)是一個由唐納德·A·馬丁英語Donald A. Martin羅伯特·M·梭羅維英語Robert M. Solovay引進的[1]公理,這公理獨立於慣常的、帶有選擇公理策梅洛-弗蘭克爾集合論(ZFC)。這公理在連續統假設成立的狀況下成立,但也與否定連續統假設的ZFC公理系統相容。

用較不正式的講法,馬丁公理講的是任何小於連續統的基數,其行為會與大體類似。這公理背後的想法可藉由研究羅修娃-西葛斯基引理的證明得知;而這是用以控制特定力迫論證的其中一個原則。

Remove ads

陳述

給定任意的基數,我們可以定義一個如下的陳述,並將這陳述給記做

對於任意滿足可數鏈條件偏序及任意的稠密集的集族而言,若,則存在一個上的濾子,使得對於任意的而言,非空。

由於這是一個使得不成立的ZFC定理之故,因此馬丁公理可表述如下:

馬丁公理(MA):對於任意的成立

在這情況(應用可數鏈條件)下,一個反鏈的子集,且這子集使得的任意兩個元素不兼容(若在偏序中存在一個低於兩者的共通元素,則說兩個元素是兼容的),而這與等情況下的反鏈是不同的。

為真,而這即是羅修娃-西葛斯基引理

為假:是一個緊緻豪斯多夫空間,因此是個可分空間並滿足可數鏈條件。這集合沒有孤立點,因此其中的點是無處稠密的;但這集合是這麼多的點的聯集。(也可參見下述的與等價的條件)

Remove ads

與 MA ⁡ ( κ ) {\displaystyle \operatorname {MA} (\kappa )} 等價的陳述

以下陳述與等價:

  • 是一個滿足可數鏈條件的緊緻豪斯多夫空間,那不會是個或更少的無處稠密集的聯集。
  • 是一個上升的、滿足可數鏈條件偏序集,而的餘有限子集的集族,且,則存在一個向上的集合使得會見所有的元素。
  • 是一個滿足可數鏈條件的非零布爾代數的子集的集族,且,那就存在一個布爾同態,使得對於任意中的而言,要不有一個,使得,要不有個有個上界,使得
Remove ads

結果

馬丁公理在組合數學數學分析拓樸學上有許多有其他有趣的結果:

  • 波蘭空間上的無原子σ-有限博雷爾測度中,個或更少的零測集依舊是零測集;不僅如此,實數集的個或更少的勒貝格測度為零的子集的聯集,其勒貝格測度為零。
  • 對於一個緊緻豪斯多夫空間而言,若,則這空間是序列緊緻的,也就是說這空間中的每個序列都有一個收斂子序列。
  • 上,沒有任何非主要的超濾子的基本基數會小於
  • 等價地,對於任意的,有,此處的特徵英語Cardinal function,因此
  • 蘊含說滿足可數鏈條件的拓樸空間的乘積依舊滿足可數鏈條件,而這結果又蘊含說蘇斯林線英語Suslin line不存在。
  • 若馬丁公理成立,而連續統假設不成立,那就表示存在有非自由的懷特海群(Whitehead group);細拉英語Saharon Shelah用這結果證明說懷特海問題獨立於ZFC。

後續發展

參考資料

延伸閱讀

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads