Caputo分數階導數(Caputo fractional derivative),又名Caputo型分數階導數(Caputo-type fractional derivative),是一種非整數階導數的推廣,以Michele Caputo的名字命名。 Caputo於1967年首次定義了該形式的分數階導數。 [1] 動機 Caputo分數階導數源自黎曼-劉維爾分數階積分。設 f {\textstyle f} 在 ( 0 , ∞ ) {\displaystyle \left(0,\,\infty \right)} 上連續 ,則黎曼-劉維爾分數次積分 RL I {\textstyle {^{\text{RL}}\operatorname {I} }} 如下: 0 RL I x α [ f ( x ) ] = 1 Γ ( α ) ⋅ ∫ 0 x f ( t ) ( x − t ) 1 − α d t {\displaystyle {_{0}^{\text{RL}}\operatorname {I} _{x}^{\alpha }}\left[f\left(x\right)\right]={\frac {1}{\Gamma \left(\alpha \right)}}\cdot \int \limits _{0}^{x}{\frac {f\left(t\right)}{\left(x-t\right)^{1-\alpha }}}\,\operatorname {d} t} 其中 Γ ( ⋅ ) {\textstyle \Gamma \left(\cdot \right)} 是Gamma函數。 定義 D x α := d α d x α {\textstyle \operatorname {D} _{x}^{\alpha }:={\frac {\operatorname {d} ^{\alpha }}{\operatorname {d} x^{\alpha }}}} ,滿足 D x α D x β = D x α + β {\textstyle \operatorname {D} _{x}^{\alpha }\operatorname {D} _{x}^{\beta }=\operatorname {D} _{x}^{\alpha +\beta }} , D x α = RL I x − α {\textstyle \operatorname {D} _{x}^{\alpha }={^{\text{RL}}\operatorname {I} _{x}^{-\alpha }}} 。若 α = m + z ∈ R ∧ m ∈ N 0 ∧ 0 < z < 1 {\textstyle \alpha =m+z\in \mathbb {R} \wedge m\in \mathbb {N} _{0}\wedge 0<z<1} 那麼 D x α = D x m + z = D x z + m = D x z − 1 + 1 + m = D x z − 1 D x 1 + m = RL I x 1 − z D x 1 + m {\textstyle \operatorname {D} _{x}^{\alpha }=\operatorname {D} _{x}^{m+z}=\operatorname {D} _{x}^{z+m}=\operatorname {D} _{x}^{z-1+1+m}=\operatorname {D} _{x}^{z-1}\operatorname {D} _{x}^{1+m}={^{\text{RL}}\operatorname {I} }_{x}^{1-z}\operatorname {D} _{x}^{1+m}} 。故,若 f {\displaystyle f} 亦屬於 C m ( 0 , ∞ ) {\displaystyle C^{m}\left(0,\,\infty \right)} , 則有 D x m + z [ f ( x ) ] = 1 Γ ( 1 − z ) ⋅ ∫ 0 x f ( 1 + m ) ( t ) ( x − t ) z d t . {\displaystyle {\operatorname {D} _{x}^{m+z}}\left[f\left(x\right)\right]={\frac {1}{\Gamma \left(1-z\right)}}\cdot \int \limits _{0}^{x}{\frac {f^{\left(1+m\right)}\left(t\right)}{\left(x-t\right)^{z}}}\,\operatorname {d} t.} 上式稱為Caputo型分數階導數,通常寫為 C D x α {\textstyle {^{\text{C}}\operatorname {D} }_{x}^{\alpha }} 。 Remove ads定義 Caputo型分數階導數的首個定義由Caputo給出: C D x m + z [ f ( x ) ] = 1 Γ ( 1 − z ) ⋅ ∫ 0 x f ( m + 1 ) ( t ) ( x − t ) z d t {\displaystyle {^{\text{C}}\operatorname {D} _{x}^{m+z}}\left[f\left(x\right)\right]={\frac {1}{\Gamma \left(1-z\right)}}\cdot \int \limits _{0}^{x}{\frac {f^{\left(m+1\right)}\left(t\right)}{\left(x-t\right)^{z}}}\,\operatorname {d} t} 其中 C m ( 0 , ∞ ) {\displaystyle C^{m}\left(0,\,\infty \right)} , m ∈ N 0 ∧ 0 < z < 1 {\textstyle m\in \mathbb {N} _{0}\wedge 0<z<1} 。 [2] 一個常見的等效定義是: C D x α [ f ( x ) ] = 1 Γ ( ⌈ α ⌉ − α ) ⋅ ∫ 0 x f ( ⌈ α ⌉ ) ( t ) ( x − t ) α + 1 − ⌈ α ⌉ d t {\displaystyle {^{\text{C}}\operatorname {D} _{x}^{\alpha }}\left[f\left(x\right)\right]={\frac {1}{\Gamma \left(\left\lceil \alpha \right\rceil -\alpha \right)}}\cdot \int \limits _{0}^{x}{\frac {f^{\left(\left\lceil \alpha \right\rceil \right)}\left(t\right)}{\left(x-t\right)^{\alpha +1-\left\lceil \alpha \right\rceil }}}\,\operatorname {d} t} 其中 α ∈ R > 0 ∖ N {\textstyle \alpha \in \mathbb {R} _{>0}\setminus \mathbb {N} } , ⌈ ⋅ ⌉ {\textstyle \left\lceil \cdot \right\rceil } 是上限函數。通過換元法,令 α = m + z {\textstyle \alpha =m+z} ,則 ⌈ α ⌉ = m + 1 {\textstyle \left\lceil \alpha \right\rceil =m+1} , ⌈ α ⌉ + z = α + 1 {\textstyle \left\lceil \alpha \right\rceil +z=\alpha +1} ,可以得到上述式子。 [3] 另一個常見的等效定義如下: C D x α [ f ( x ) ] = 1 Γ ( n − α ) ⋅ ∫ 0 x f ( n ) ( t ) ( x − t ) α + 1 − n d t {\displaystyle {^{\text{C}}\operatorname {D} _{x}^{\alpha }}\left[f\left(x\right)\right]={\frac {1}{\Gamma \left(n-\alpha \right)}}\cdot \int \limits _{0}^{x}{\frac {f^{\left(n\right)}\left(t\right)}{\left(x-t\right)^{\alpha +1-n}}}\,\operatorname {d} t} 其中 n − 1 < α < n ∈ N {\textstyle n-1<\alpha <n\in \mathbb {N} } 。 上述定義存在問題:它們只適用於 ( 0 , ∞ ) {\textstyle \left(0,\,\infty \right)} 。可以通過將積分下限替換為 a {\textstyle a} 來解決: a C D x α [ f ( x ) ] = 1 Γ ( ⌈ α ⌉ − α ) ⋅ ∫ a x f ( ⌈ α ⌉ ) ( t ) ( x − t ) α + 1 − ⌈ α ⌉ d t {\textstyle {_{a}^{\text{C}}\operatorname {D} _{x}^{\alpha }}\left[f\left(x\right)\right]={\frac {1}{\Gamma \left(\left\lceil \alpha \right\rceil -\alpha \right)}}\cdot \int \limits _{a}^{x}{\frac {f^{\left(\left\lceil \alpha \right\rceil \right)}\left(t\right)}{\left(x-t\right)^{\alpha +1-\left\lceil \alpha \right\rceil }}}\,\operatorname {d} t} 。新的定義域是 ( a , ∞ ) {\textstyle \left(a,\,\infty \right)} . Remove ads性質和定理 基本性質和定理 該算子的一些基本性質如下: [4] 更多信息 , ... 基本性質和定理表 特性 f ( x ) {\displaystyle f\left(x\right)} a C D x α [ f ( x ) ] {\displaystyle {_{a}^{\text{C}}\operatorname {D} _{x}^{\alpha }}\left[f\left(x\right)\right]} 條件 定義 f ( x ) {\displaystyle f\left(x\right)} f ( α ) ( x ) − f ( α ) ( a ) {\displaystyle f^{\left(\alpha \right)}\left(x\right)-f^{\left(\alpha \right)}\left(a\right)} 線性 b ⋅ g ( x ) + c ⋅ h ( x ) {\displaystyle b\cdot g\left(x\right)+c\cdot h\left(x\right)} b ⋅ a C D x α [ g ( x ) ] + c ⋅ a C D x α [ h ( x ) ] {\displaystyle b\cdot {_{a}^{\text{C}}\operatorname {D} _{x}^{\alpha }}\left[g\left(x\right)\right]+c\cdot {_{a}^{\text{C}}\operatorname {D} _{x}^{\alpha }}\left[h\left(x\right)\right]} 指數律 D x β {\displaystyle \operatorname {D} _{x}^{\beta }} a C D x α + β {\displaystyle {_{a}^{\text{C}}\operatorname {D} _{x}^{\alpha +\beta }}} β ∈ Z {\displaystyle \beta \in \mathbb {Z} } 半群性質 a C D x β {\displaystyle {_{a}^{\text{C}}\operatorname {D} _{x}^{\beta }}} a C D x α + β {\displaystyle {_{a}^{\text{C}}\operatorname {D} _{x}^{\alpha +\beta }}} ⌈ α ⌉ = ⌈ β ⌉ {\displaystyle \left\lceil \alpha \right\rceil =\left\lceil \beta \right\rceil } 关闭 Remove ads非交換律 指數律並不總是滿足交換律: a C D x α a C D x β = a C D x α + β ≠ a C D x β a C D x α {\displaystyle \operatorname {_{a}^{\text{C}}D} _{x}^{\alpha }\operatorname {_{a}^{\text{C}}D} _{x}^{\beta }=\operatorname {_{a}^{\text{C}}D} _{x}^{\alpha +\beta }\neq \operatorname {_{a}^{\text{C}}D} _{x}^{\beta }\operatorname {_{a}^{\text{C}}D} _{x}^{\alpha }} 其中 α ∈ R > 0 ∖ N ∧ β ∈ N {\displaystyle \alpha \in \mathbb {R} _{>0}\setminus \mathbb {N} \wedge \beta \in \mathbb {N} } 。 Remove ads分數萊布尼茨法則 Caputo分數階導數的萊布尼茨法則如下: a C D x α [ g ( x ) ⋅ h ( x ) ] = ∑ k = 0 ∞ [ ( a k ) ⋅ g ( k ) ( x ) ⋅ a RL D x α − k [ h ( x ) ] ] − ( x − a ) − α Γ ( 1 − α ) ⋅ g ( a ) ⋅ h ( a ) {\displaystyle \operatorname {_{a}^{\text{C}}D} _{x}^{\alpha }\left[g\left(x\right)\cdot h\left(x\right)\right]=\sum \limits _{k=0}^{\infty }\left[{\binom {a}{k}}\cdot g^{\left(k\right)}\left(x\right)\cdot \operatorname {_{a}^{\text{RL}}D} _{x}^{\alpha -k}\left[h\left(x\right)\right]\right]-{\frac {\left(x-a\right)^{-\alpha }}{\Gamma \left(1-\alpha \right)}}\cdot g\left(a\right)\cdot h\left(a\right)} 其中 ( a b ) = Γ ( a + 1 ) Γ ( b + 1 ) ⋅ Γ ( a − b + 1 ) {\textstyle {\binom {a}{b}}={\frac {\Gamma \left(a+1\right)}{\Gamma \left(b+1\right)\cdot \Gamma \left(a-b+1\right)}}} 是二項式係數。 [5] [6] Remove ads與其他分數階微分算子的關係 Caputo型分數階導數的定義與黎曼-劉維爾分數階積分密切相關: a C D x α [ f ( x ) ] = a RL I x ⌈ α ⌉ − α [ D x ⌈ α ⌉ [ f ( x ) ] ] {\displaystyle {_{a}^{\text{C}}\operatorname {D} _{x}^{\alpha }}\left[f\left(x\right)\right]={_{a}^{\text{RL}}\operatorname {I} _{x}^{\left\lceil \alpha \right\rceil -\alpha }}\left[\operatorname {D} _{x}^{\left\lceil \alpha \right\rceil }\left[f\left(x\right)\right]\right]} 此外,還適用以下關係: a C D x α [ f ( x ) ] = a RL D x α [ f ( x ) ] − ∑ k = 0 ⌈ α ⌉ [ x k − α Γ ( k − α + 1 ) ⋅ f ( k ) ( 0 ) ] {\displaystyle {_{a}^{\text{C}}\operatorname {D} _{x}^{\alpha }}\left[f\left(x\right)\right]={_{a}^{\text{RL}}\operatorname {D} _{x}^{\alpha }}\left[f\left(x\right)\right]-\sum \limits _{k=0}^{\left\lceil \alpha \right\rceil }\left[{\frac {x^{k-\alpha }}{\Gamma \left(k-\alpha +1\right)}}\cdot f^{\left(k\right)}\left(0\right)\right]} 其中 a RL D x α {\displaystyle {_{a}^{\text{RL}}\operatorname {D} _{x}^{\alpha }}} 是黎曼-劉維爾分數階導數。 Remove ads拉普拉斯變換 Caputo型分數階導數的拉普拉斯變換如下: L x { a C D x α [ f ( x ) ] } ( s ) = s α ⋅ F ( s ) − ∑ k = 0 ⌈ α ⌉ [ s α − k − 1 ⋅ f ( k ) ( 0 ) ] {\displaystyle {\mathcal {L}}_{x}\left\{{_{a}^{\text{C}}\operatorname {D} _{x}^{\alpha }}\left[f\left(x\right)\right]\right\}\left(s\right)=s^{\alpha }\cdot F\left(s\right)-\sum \limits _{k=0}^{\left\lceil \alpha \right\rceil }\left[s^{\alpha -k-1}\cdot f^{\left(k\right)}\left(0\right)\right]} 其中 L x { f ( x ) } ( s ) = F ( s ) {\textstyle {\mathcal {L}}_{x}\left\{f\left(x\right)\right\}\left(s\right)=F\left(s\right)} . [7] Remove ads一些函數的Caputo分數階導數 常數 c {\displaystyle c} 的Caputo分數階導數由下式給出: a C D x α [ c ] = 1 Γ ( ⌈ α ⌉ − α ) ⋅ ∫ a x D t ⌈ α ⌉ [ c ] ( x − t ) α + 1 − ⌈ α ⌉ d t = 1 Γ ( ⌈ α ⌉ − α ) ⋅ ∫ a x 0 ( x − t ) α + 1 − ⌈ α ⌉ d t a C D x α [ c ] = 0 {\displaystyle {\begin{aligned}{_{a}^{\text{C}}\operatorname {D} _{x}^{\alpha }}\left[c\right]&={\frac {1}{\Gamma \left(\left\lceil \alpha \right\rceil -\alpha \right)}}\cdot \int \limits _{a}^{x}{\frac {\operatorname {D} _{t}^{\left\lceil \alpha \right\rceil }\left[c\right]}{\left(x-t\right)^{\alpha +1-\left\lceil \alpha \right\rceil }}}\,\operatorname {d} t={\frac {1}{\Gamma \left(\left\lceil \alpha \right\rceil -\alpha \right)}}\cdot \int \limits _{a}^{x}{\frac {0}{\left(x-t\right)^{\alpha +1-\left\lceil \alpha \right\rceil }}}\,\operatorname {d} t\\{_{a}^{\text{C}}\operatorname {D} _{x}^{\alpha }}\left[c\right]&=0\end{aligned}}} 冪函數 x b {\displaystyle x^{b}} 的Caputo分數階導數由下式給出: a C D x α [ x b ] = a RL I x ⌈ α ⌉ − α [ D x ⌈ α ⌉ [ x b ] ] = Γ ( b + 1 ) Γ ( b − ⌈ α ⌉ + 1 ) ⋅ a RL I x ⌈ α ⌉ − α [ x b − ⌈ α ⌉ ] a C D x α [ x b ] = { Γ ( b + 1 ) Γ ( b − α + 1 ) ( x b − α − a b − α ) , for ⌈ α ⌉ − 1 < b ∧ b ∈ R 0 , for ⌈ α ⌉ − 1 ≥ b ∧ b ∈ N {\displaystyle {\begin{aligned}{_{a}^{\text{C}}\operatorname {D} _{x}^{\alpha }}\left[x^{b}\right]&={_{a}^{\text{RL}}\operatorname {I} _{x}^{\left\lceil \alpha \right\rceil -\alpha }}\left[\operatorname {D} _{x}^{\left\lceil \alpha \right\rceil }\left[x^{b}\right]\right]={\frac {\Gamma \left(b+1\right)}{\Gamma \left(b-\left\lceil \alpha \right\rceil +1\right)}}\cdot {_{a}^{\text{RL}}\operatorname {I} _{x}^{\left\lceil \alpha \right\rceil -\alpha }}\left[x^{b-\left\lceil \alpha \right\rceil }\right]\\{_{a}^{\text{C}}\operatorname {D} _{x}^{\alpha }}\left[x^{b}\right]&={\begin{cases}{\frac {\Gamma \left(b+1\right)}{\Gamma \left(b-\alpha +1\right)}}\left(x^{b-\alpha }-a^{b-\alpha }\right),\,&{\text{for }}\left\lceil \alpha \right\rceil -1<b\wedge b\in \mathbb {R} \\0,\,&{\text{for }}\left\lceil \alpha \right\rceil -1\geq b\wedge b\in \mathbb {N} \\\end{cases}}\end{aligned}}} 指數函數 e a ⋅ x {\displaystyle e^{a\cdot x}} 的Caputo分數階導數由下式給出: a C D x α [ e b ⋅ x ] = a RL I x ⌈ α ⌉ − α [ D x ⌈ α ⌉ [ e b ⋅ x ] ] = b ⌈ α ⌉ ⋅ a RL I x ⌈ α ⌉ − α [ e b ⋅ x ] a C D x α [ e b ⋅ x ] = b α ⋅ ( E x ( ⌈ α ⌉ − α , b ) − E a ( ⌈ α ⌉ − α , b ) ) {\displaystyle {\begin{aligned}{_{a}^{\text{C}}\operatorname {D} _{x}^{\alpha }}\left[e^{b\cdot x}\right]&={_{a}^{\text{RL}}\operatorname {I} _{x}^{\left\lceil \alpha \right\rceil -\alpha }}\left[\operatorname {D} _{x}^{\left\lceil \alpha \right\rceil }\left[e^{b\cdot x}\right]\right]=b^{\left\lceil \alpha \right\rceil }\cdot {_{a}^{\text{RL}}\operatorname {I} _{x}^{\left\lceil \alpha \right\rceil -\alpha }}\left[e^{b\cdot x}\right]\\{_{a}^{\text{C}}\operatorname {D} _{x}^{\alpha }}\left[e^{b\cdot x}\right]&=b^{\alpha }\cdot \left(E_{x}\left(\left\lceil \alpha \right\rceil -\alpha ,\,b\right)-E_{a}\left(\left\lceil \alpha \right\rceil -\alpha ,\,b\right)\right)\\\end{aligned}}} 其中 E x ( ν , a ) = a − ν ⋅ e a ⋅ x ⋅ γ ( ν , a ⋅ x ) Γ ( ν ) {\textstyle E_{x}\left(\nu ,\,a\right)={\frac {a^{-\nu }\cdot e^{a\cdot x}\cdot \gamma \left(\nu ,\,a\cdot x\right)}{\Gamma \left(\nu \right)}}} 是 E t {\textstyle \operatorname {E} _{t}} -函數, γ ( a , b ) {\textstyle \gamma \left(a,\,b\right)} 是下不完全Gamma函數。 [8] Remove ads參考文獻Loading content...拓展閱讀Loading content...Loading related searches...Wikiwand - on Seamless Wikipedia browsing. On steroids.Remove ads