daat6(英語:Darmstadtium),是一種人工合成化學元素,其化學符號Ds原子序數為110。鐽是一種放射性極強的超重元素錒系後元素,所有同位素半衰期都很短,非常不穩定,其最重也最長壽的同位素為281Ds,半衰期約為11秒。鐽是10族中最重的元素,但由於沒有足夠穩定的同位素,因此目前未能通過化學實驗來驗證鐽的性質是否符合元素週期律。有證據顯示存在着另一個更長壽的同核異構體281mDs,其半衰期為3.71分鐘。

Quick Facts 概況, 名稱·符號·序數 ...
鐽 110Ds
氫(非金屬) 氦(貴氣體)
鋰(鹼金屬) 鈹(鹼土金屬) 硼(類金屬) 碳(非金屬) 氮(非金屬) 氧(非金屬) 氟(鹵素) 氖(貴氣體)
鈉(鹼金屬) 鎂(鹼土金屬) 鋁(貧金屬) 矽(類金屬) 磷(非金屬) 硫(非金屬) 氯(鹵素) 氬(貴氣體)
鉀(鹼金屬) 鈣(鹼土金屬) 鈧(過渡金屬) 鈦(過渡金屬) 釩(過渡金屬) 鉻(過渡金屬) 錳(過渡金屬) 鐵(過渡金屬) 鈷(過渡金屬) 鎳(過渡金屬) 銅(過渡金屬) 鋅(過渡金屬) 鎵(貧金屬) 鍺(類金屬) 砷(類金屬) 硒(非金屬) 溴(鹵素) 氪(貴氣體)
銣(鹼金屬) 鍶(鹼土金屬) 釔(過渡金屬) 鋯(過渡金屬) 鈮(過渡金屬) 鉬(過渡金屬) 鍀(過渡金屬) 釕(過渡金屬) 銠(過渡金屬) 鈀(過渡金屬) 銀(過渡金屬) 鎘(過渡金屬) 銦(貧金屬) 錫(貧金屬) 銻(類金屬) 碲(類金屬) 碘(鹵素) 氙(貴氣體)
銫(鹼金屬) 鋇(鹼土金屬) 鑭(鑭系元素) 鈰(鑭系元素) 鐠(鑭系元素) 釹(鑭系元素) 鉕(鑭系元素) 釤(鑭系元素) 銪(鑭系元素) 釓(鑭系元素) 鋱(鑭系元素) 鏑(鑭系元素) 鈥(鑭系元素) 鉺(鑭系元素) 銩(鑭系元素) 鐿(鑭系元素) 鑥(鑭系元素) 鉿(過渡金屬) 鉭(過渡金屬) 鎢(過渡金屬) 錸(過渡金屬) 鋨(過渡金屬) 銥(過渡金屬) 鉑(過渡金屬) 金(過渡金屬) 汞(過渡金屬) 鉈(貧金屬) 鉛(貧金屬) 鉍(貧金屬) 釙(貧金屬) 砹(類金屬) 氡(貴氣體)
鈁(鹼金屬) 鐳(鹼土金屬) 錒(錒系元素) 釷(錒系元素) 鏷(錒系元素) 鈾(錒系元素) 鎿(錒系元素) 鈈(錒系元素) 鎇(錒系元素) 鋦(錒系元素) 錇(錒系元素) 鐦(錒系元素) 鎄(錒系元素) 鐨(錒系元素) 鍆(錒系元素) 鍩(錒系元素) 鐒(錒系元素) 鑪(過渡金屬) 𨧀(過渡金屬) 𨭎(過渡金屬) 𨨏(過渡金屬) 𨭆(過渡金屬) (預測為過渡金屬) 鐽(預測為過渡金屬) 錀(預測為過渡金屬) 鎶(過渡金屬) 鉨(預測為貧金屬) 鈇(貧金屬) 鏌(預測為貧金屬) 鉝(預測為貧金屬) 鿬(預測為鹵素) 鿫(預測為貴氣體)




(Uhn)
概況
名稱·符號·序數鐽(Darmstadtium)·Ds·110
元素類別未知
可能為過渡金屬
·週期·10·7·d
標準原子質量[281]
電子排布[Rn] 5f14 6d8 7s2
(預測)[1]
2, 8, 18, 32, 32, 16, 2
(預測)[1]
鐽的電子層(2, 8, 18, 32, 32, 16, 2 (預測)[1])
鐽的電子層(2, 8, 18, 32, 32, 16, 2
(預測)[1]
歷史
發現重離子研究所(1994年)
物理性質
物態固體(預測)[2]
密度(接近室溫
34.8(預測)[1] g·cm−3
原子性質
氧化態8, 6, 4, 2, 0(預測)[1]
電離能第一:955.2(估值)[1] kJ·mol−1

第二:1891.1(估值)[1] kJ·mol−1
第三:3029.6(估值)[1] kJ·mol−1

更多
原子半徑118(估值)[1] pm
共價半徑128(估值)'[3] pm
雜項
CAS編號54083-77-1
同位素
主條目:鐽的同位素
同位素 豐度 半衰期t1/2 衰變
方式 能量MeV 產物
279Ds 人造 186 毫秒[4] SF
α 9.70 275Hs
281Ds 人造 14  SF
α 8.73 277Hs
Close

德國達姆施塔特重離子研究所的研究團隊在1994年首次合成出鐽元素,並以發現地達姆施塔特命名此元素。

概論

Quick Facts 外部影片連結 ...
外部影片連結
video icon 基於澳大利亞國立大學的計算,核聚變未成功的可視化[5]
Close

超重元素的合成

Thumb
核聚變反應的圖示。兩個原子核融合成一個,並發射出一個中子。在這一刻,這個反應和用來創造新元素的反應是相似的,唯一可能的區別是它有時會釋放幾個中子,或者根本不釋放中子。

超重元素[a]原子核是在兩個不同大小的原子核[b]的聚變中產生的。粗略地說,兩個原子核的質量之差越大,兩者就越有可能發生反應。[11]由較重原子核組成的物質會作為靶子,被較輕原子核的粒子束轟擊。兩個原子核只能在距離足夠近的時候,才能聚變成一個原子核。原子核都帶正電荷,會因為靜電排斥力而相互排斥,所以只有兩個原子核的距離足夠短時,強核力才能克服這個排斥力並發生聚變。粒子束因此被粒子加速器大大加速,以使這種排斥力與粒子束的速度相比變得微不足道。[12]施加到粒子束上以加速它們的能量可以使它們的速度達到光速的十分之一。但是,如果施加太多能量,粒子束可能會分崩離析。[12]

不過,只是靠得足夠近不足以使兩個原子核聚變:當兩個原子核逼近彼此時,它們通常會融為一體約10−20秒,之後再分開(分開後的原子核不需要和先前相撞的原子核相同),而非形成單一的原子核。[12][13]這是因為在嘗試形成單個原子核的過程中,靜電排斥力會撕開正在形成的原子核。[12]每一對目標和粒子束的特徵在於其截面,即兩個原子核彼此接近時發生聚變的概率。[c]這種聚變是量子效應的結果,其中原子核可通過量子穿隧效應克服靜電排斥力。如果兩個原子核可以在該階段之後保持靠近,則多個核相互作用會導致能量的重新分配和平衡。[12]

兩個原子核聚變產生的原子核處於非常不穩定,[12]被稱為複合原子核英語compound nucleus激發態[15]複合原子核為了達到更穩定的狀態,可能會直接裂變[16]或是放出一些中子來帶走激發能量。如果激發能量太小,無法放出中子,複合原子核就會放出γ射線來帶走激發能量。這個過程會在原子核碰撞後的10−16秒發生,並創造出更穩定的原子核。[16]原子核只有在10−14秒內不衰變IUPAC/IUPAP聯合工作小組才會認為它是化學元素。這個值大約是原子核得到它的外層電子,顯示其化學性質所需的時間。[17][d]

衰變和探測

粒子束穿過目標後,會到達下一個腔室——分離室。如果反應產生了新的原子核,它就會存在於這個粒子束中。[19]在分離室中,新的原子核會從其它核種(原本的粒子束和其它反應產物)中分離,[e]到達半導體探測器英語Semiconductor detector後停止。這時標記撞擊探測器的確切位置、能量和到達時間。[19]這個轉移需要10−6秒的時間,因此原子核需要存在這麼長的時間才能被檢測到。[22]若衰變發生,衰變的原子核被再次記錄,並測量位置、衰變能量和衰變時間。[19]

原子核的穩定性源自於強核力,但強核力的作用距離很短,隨着原子核越來越大,強核力對最外層的核子質子和中子)的影響減弱。同時,原子核會被質子之間,範圍不受限制的靜電排斥力撕裂。[23]強核力提供的核結合能以線性增長,而靜電排斥力則以原子序數的平方增長。後者增長更快,對重元素和超重元素而言變得越來越重要。[24][25]超重元素理論預測[26]及實際觀測到[27]的主要衰變方式,即α衰變自發裂變都是這種排斥引起的。[f]幾乎所有會α衰變的核種都有超過210個核子,[29]而主要通過自發裂變衰變的最輕核種有238個核子。[27]有限位勢壘在這兩種衰變方式中抑制了原子核衰變,但原子核可以隧穿這個勢壘,發生衰變。[24][25]

Thumb
基於在杜布納聯合原子核研究所中設置的杜布納充氣反衝分離器,用於產生超重元素的裝置方案。在檢測器和光束聚焦裝置內的軌跡會因為前者的磁偶極英語Magnetic dipole和後者的四極磁體英語Quadrupole magnet而改變。[30]

放射性衰變中常產生α粒子是因為α粒子中的核子平均質量足夠小,足以使α粒子有多餘能量離開原子核。[31]自發裂變則是由靜電排斥力將原子核撕裂而致,會產生各種不同的產物。[25]隨着原子序數增加,自發裂變迅速變得重要:自發裂變的部分半衰期從92號元素到102號元素下降了23個數量級,[32]從90號元素到100號元素下降了30個數量級。[33]早期的液滴模型因此表明有約280個核子的原子核的裂變勢壘英語Fission barrier會消失,因此自發裂變會立即發生。[25][34]之後的核殼層模型表明有大約300個核子的原子核將形成一個穩定島,其中的原子核不易發生自發裂變,而是會發生半衰期更長的α衰變。[25][34]隨後的發現表明預測存在的穩定島可能比原先預期的更遠,還發現長壽命錒系元素和穩定島之間的原子核發生變形,獲得額外的穩定性。[35]對較輕的超重核種[36]以及那些更接近穩定島的核種[32]的實驗發現它們比先前預期的更難發生自發裂變,表明核殼層效應變得重要。[g]

α衰變由發射出去的α粒子記錄,在原子核衰變之前就能確定衰變產物。如果α衰變或連續的α衰變產生了已知的原子核,則可以很容易地確定反應的原始產物。[h]因為連續的α衰變都會在同一個地方發生,所以通過確定衰變發生的位置,可以確定衰變彼此相關。[19]已知的原子核可以通過它經歷的衰變的特定特徵來識別,例如衰變能量(或更具體地說,發射粒子的動能)。[i]然而,自發裂變會產生各種分裂產物,因此無法從其分裂產物確定原始核種。[j]

嘗試合成超重元素的物理學家可以獲得的信息是探測器收集到的信息,即原子核到達探測器的位置、能量、時間以及它衰變的信息。他們分析這些數據並試圖得出結論,確認它確實是由新元素引起的。如果提供的數據不足以得出創造出來的核種確實是新元素的結論,且對觀察到的現象沒有其它解釋,就可能在解釋數據時出現錯誤。[k]

歷史

發現

鐽是一種人工合成的元素,由德國達姆施塔特重離子研究所(GSI)的西格・霍夫曼英語Sigurd Hofmann等人於1994年11月9日,在線性加速器內利用-62和-64轟擊-208而合成的。製成的同位素有鐽-269和鐽-271,其中鐽-271比較穩定。

命名

根據IUPAC元素系統命名法,鐽的舊稱是Ununnilium,源自110的拉丁文寫法。2003年8月16日,IUPAC正式將其命名為Darmstadtium,以紀念發現這元素的重離子研究所所在地達姆施塔特(但其實GSI位於達姆施塔特以北的Wixhausen小區)。由於110也是德國報警時所撥的號碼,鐽又有另外一個外號:Policium(警察元素)。[47]

2003年12月,全國科學技術名詞審定委員會化學名詞審定委員會組織無機化學名詞組和放射化學名詞組及有關專家,討論了110號元素的中文名稱的定名問題,在廣泛徵求意見的基礎上審定名稱為「鐽」(讀音同「達」)。其定名使用的漢字已徵得國家語言文字工作委員會的同意,經全國科學技術名詞審定委員會批准予以公佈使用。[48]

同位素與核特性

More information 同位素, 半衰期[l] ...
鐽的同位素列表
同位素 半衰期[l] 衰變方式 發現年份 發現方法[49]
數值 來源
267Ds[m] 10 µs [50] α 1994年 209Bi(59Co,n)
269Ds 230 µs [50] α 1994年 208Pb(62Ni,n)
270Ds 205 µs [50] α 2000年 207Pb(64Ni,n)
270mDs 10 ms [50] α 2000年 207Pb(64Ni,n)
271Ds 90 ms [50] α 1994年 208Pb(64Ni,n)
271mDs 1.7 ms [50] α 1994年 208Pb(64Ni,n)
273Ds 240 µs [50] α 1996年 244Pu(34S,5n)[51]
275Ds 430 µs [52] α 2023年 232Th(48Ca,5n)
276Ds ~66 µs [53] SF, α 2022年 232Th(48Ca,4n)[53]
277Ds 3.5 ms [54] α 2010年 285Fl(—,2α)
279Ds 186 ms [4] SF, α 2003年 287Fl(—,2α)
280Ds[55] 360 µs [56][57][58] SF 2021年 288Fl(—,2α)
281Ds 14 s [59] SF, α 2004年 289Fl(—,2α)
281mDs[m] 900 ms [50] α 2012年 293mLv(—,3α)
Close

目前已知的鐽同位素共有11個,質量數分別為267、269-271、273、275-277和279-281,還有三個已知的亞穩態,鐽-270m、鐽-271m和鐽-281m(未證實)。鐽的同位素全部都具有極高的放射性半衰期極短,非常不穩定,且較重的同位素大多比較輕的同位素來的穩定,其中最長壽的同位素為鐽-281,半衰期約12.7秒,也是目前發現最重的鐽同位素。其餘同位素的半衰期都在1秒以下,大部分半衰期在1微秒至70毫秒之間。[60]大多數鐽同位素主要發生α衰變,有些則會進行自發裂變[61]

化學屬性

推算的化學屬性

氧化態

鐽預計將是6d系的第8個過渡金屬,是元素週期表10族最重的成員,位於的下面。鉑的最高氧化態為+6,但鎳和鈀則具有穩定的+4和+2態。因此鐽的氧化態預計將會是+6、+4和+2。

化學特性

鐽的同族元素從上到下高價態越來越穩定,因此鐽可能會形成穩定的六氟化物DsF6以及DsF5和DsF4和三氧化物DsO3鹵素應該能夠與鐽形成四鹵化物,DsCl4、DsBr4和DsI4。和其他10族元素一樣,鐽預計可能有較高的硬度和催化性。

註釋

參考資料

參考書目

參考書目

外部連結

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.