热门问题
时间线
聊天
视角

σ-代數

来自维基百科,自由的百科全书

Remove ads

數學中,某個集合 X 上的 σ-代數(英語:σ-algebra)又叫 σ-域(英語:σ-field),是 X 的某群子集合所構成的特殊子集族。這個子集族對於補集運算和可數個聯集運算具有封閉性(因此對於可數個交集運算也是封閉的)。σ-代數在測度論裡可以用來定義所謂的「可測集合」,是測度論的基礎概念之一。

σ-代數的概念大約起始於1900~1930年,它隨著測度論的發展而逐漸清晰。最著名的 σ-代數是關於實數軸測度的波萊爾σ-代數(得名於法國數學家埃米·波萊爾),以及1901年亨利·勒貝格建立的勒貝格σ-代數。而現代的測度理論的公理化體系就建立在勒貝格的相關理論之上。在這個領域中,σ-代數不僅僅是用於建立公理體系,也是一個強有力的工具,在定義許多重要的概念如條件期望值的時候,都需要用到。

動機

σ-代數的提出有至少三個作用:定義測度,操作集合的極限,以及管理集合所表示的部分資訊。

測度

測度是給的子集賦予非負實數值的函數;可以把測度想成給集合的一個精確的「大小」或「體積」的定義。直覺上來講,若干個互不相交集合的聯集的大小應當等於它們各自的大小之和,即使有無窮多個這樣的不交集

定義

定義 — 
為一集合,假設有子集族 代表 冪集)滿足下列條件[1][2]

則稱 的一個 σ-代數

注意到定義第3條的,意思是 自然數系 等勢,直觀的意思就是 裡的元素跟自然數一樣多。

以上定義的直觀意義為:一群 子集合所組成的集合 ,為 上的一個 σ-代數意思是滿足:

  • 本身就是 的元素;
  • 如果集合 中,那麼它的補集 也在中;
  • 如果有可數個集合 都在 中,那麼它們的聯集也在 中。

測度論有序對 會被稱為一個可測空間。而任何在 中的子集 ,則稱為可測集合(measurable set);而在機率論中, 被稱為事件族(family of events), 中的子集 則稱為事件

Remove ads

例子

  • 上最小的σ-代數是
  • 上最大的σ-代數是冪集(也就是所有 子集合所組成的集合)
Remove ads

最小σ-代數

定理 — 
的一個子集族,則:

也是 的σ代數。

更多資訊 根據 ...

根據以上的定理,可以做以下的定義:

定義 — 
的一個子集族,則:

稱為包含 最小σ-代數

Remove ads

例子

  • 設集合,那麼 是集合上含有 的σ-代數中最「小」的一個。


Remove ads

性質

σ-代數是一個代數也是一個λ系,它對集合的交集聯集差集、可數交集、可數聯集運算都是封閉的。

參考來源

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads