L-K方法假設兩個相鄰幀的圖像內容位移很小,且位移在所研究點p的鄰域內為大致為常數。所以,可以假設光流方程 在以p點為中心的窗口內對所有的像素都成立。也就是說,局部圖像流(速度)向量
須滿足:




其中,
是窗口中的像素,
是圖像在點
和當前時間對位置x,y和時間t的偏導。
這些等式可以寫成矩陣的形式
,此處
![{\displaystyle A={\begin{bmatrix}I_{x}(q_{1})&I_{y}(q_{1})\\[10pt]I_{x}(q_{2})&I_{y}(q_{2})\\[10pt]\vdots &\vdots \\[10pt]I_{x}(q_{n})&I_{y}(q_{n})\end{bmatrix}},\quad \quad v={\begin{bmatrix}V_{x}\\[10pt]V_{y}\end{bmatrix}},\quad {\mbox{and}}\quad b={\begin{bmatrix}-I_{t}(q_{1})\\[10pt]-I_{t}(q_{2})\\[10pt]\vdots \\[10pt]-I_{t}(q_{n})\end{bmatrix}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/f289ba8a702ce3fa3e32457b02f6a69a28b87a79)
此方程組的等式個數多於未知數個數,所以它通常是over-determined的。L-K方法使用最小平方法獲得一個近似解,即計算一個2x2的方程組:
或

其中,
是矩陣
的轉置。即計算:
![{\displaystyle {\begin{bmatrix}V_{x}\\[10pt]V_{y}\end{bmatrix}}={\begin{bmatrix}\sum _{i}I_{x}(q_{i})^{2}&\sum _{i}I_{x}(q_{i})I_{y}(q_{i})\\[10pt]\sum _{i}I_{y}(q_{i})I_{x}(q_{i})&\sum _{i}I_{y}(q_{i})^{2}\end{bmatrix}}^{-1}{\begin{bmatrix}-\sum _{i}I_{x}(q_{i})I_{t}(q_{i})\\[10pt]-\sum _{i}I_{y}(q_{i})I_{t}(q_{i})\end{bmatrix}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/7d94a7e72c2c1f8bda30c925e57d543cb4d48145)
對i=1 到 n求和。
矩陣
通常被稱作圖像在點p的 結構張量。