格林恆等式(Green's identities)乃是向量分析的一組共三條恆等式,以發現格林定理的英國數學家喬治·格林命名。 格林第一恆等式 設定向量場 F = ψ ∇ ϕ {\displaystyle \mathbf {F} =\psi \nabla \phi } ;其中,在 R 3 {\displaystyle \mathbb {R} ^{3}} 的某區域 U {\displaystyle \mathbb {U} } 內, ϕ {\displaystyle \phi } 是二次連續可微標量函數, ψ {\displaystyle \psi } 是一次連續可微標量函數,則從散度定理, ∫ U ∇ ⋅ F d V = ∮ ∂ U F ⋅ n d S {\displaystyle \int _{\mathbb {U} }\nabla \cdot \mathbf {F} \,\mathrm {d} V=\oint _{\partial \mathbb {U} }\mathbf {F} \cdot \mathbf {n} \,\mathrm {d} S} , 可以推導出格林第一恆等式[1]: ∫ U ( ψ ∇ 2 ϕ + ∇ ϕ ⋅ ∇ ψ ) d V = ∮ ∂ U ψ ∂ ϕ ∂ n d S {\displaystyle \int _{\mathbb {U} }(\psi \nabla ^{2}\phi +\nabla \phi \cdot \nabla \psi )\,\mathrm {d} V=\oint _{\partial \mathbb {U} }\psi {\partial \phi \over \partial n}\,\mathrm {d} S} ; 其中, ∂ U {\displaystyle \partial \mathbb {U} } 是區域 U {\displaystyle \mathbb {U} } 的邊界, ∂ ∂ n {\displaystyle {\frac {\partial }{\partial n}}} 是取於邊界面 ∂ U {\displaystyle \partial \mathbb {U} } 的法向導數,即 ∂ ϕ ∂ n = ∇ ϕ ⋅ n {\displaystyle {\frac {\partial \phi }{\partial n}}=\nabla \phi \cdot \mathbf {n} } 。 格林第二恆等式 假若在區域 U {\displaystyle \mathbb {U} } 內, ϕ {\displaystyle \phi } 和 ψ {\displaystyle \psi } 都是二次連續可微,則可交換 ϕ {\displaystyle \phi } 與 ψ {\displaystyle \psi } ,從 ( ψ , ϕ ) {\displaystyle (\psi ,\phi )} 的格林第一恆等式得到 ( ϕ , ψ ) {\displaystyle (\phi ,\psi )} 的格林第一恆等式。將這兩個恆等式相減,則可得到格林第二恆等式: ∫ U ( ψ ∇ 2 ϕ − ϕ ∇ 2 ψ ) d V = ∮ ∂ U ( ψ ∂ ϕ ∂ n − ϕ ∂ ψ ∂ n ) d S {\displaystyle \int _{\mathbb {U} }\left(\psi \nabla ^{2}\phi -\phi \nabla ^{2}\psi \right)\,\mathrm {d} V=\oint _{\partial \mathbb {U} }\left(\psi {\partial \phi \over \partial n}-\phi {\partial \psi \over \partial n}\right)\,\mathrm {d} S} 。 格林第三恆等式 假設函數 G {\displaystyle G} 是拉普拉斯方程式的基本解(fundamental solution): ∇ 2 G ( x , x ′ ) = δ ( x − x ′ ) {\displaystyle \nabla ^{2}G(\mathbf {x} ,\mathbf {x} ')=\delta (\mathbf {x} -\mathbf {x} ')} ; 其中, δ ( x − x ′ ) {\displaystyle \delta (\mathbf {x} -\mathbf {x} ')} 是狄拉克δ函數。 例如,在R3,基本解的形式為 G ( x , x ′ ) = − 1 4 π ‖ x − x ′ ‖ {\displaystyle G(\mathbf {x} ,\mathbf {x} ')={-1 \over 4\pi \|\mathbf {x} -\mathbf {x} '\|}} 。 函數 G {\displaystyle G} 稱為格林函數。對於變數 x {\displaystyle \mathbf {x} } 與 x ′ {\displaystyle \mathbf {x} '} 的交換,格林函數具有對稱性,即 G ( x , x ′ ) = G ( x ′ , x ) {\displaystyle G(\mathbf {x} ,\mathbf {x} ')=G(\mathbf {x} ',\mathbf {x} )} 。 設定 ϕ = G {\displaystyle \phi =G} ,在區域 U {\displaystyle \mathbb {U} } 內, ψ {\displaystyle \psi } 是二次連續可微。假若 x {\displaystyle \mathbf {x} } 在積分區域 U {\displaystyle \mathbb {U} } 內,則應用狄拉克δ函數的定義, ψ ( x ) − ∫ U [ G ( x , x ′ ) ∇ ′ 2 ψ ( x ′ ) ] d V ′ = ∮ ∂ U [ ψ ( x ′ ) ∂ G ( x , x ′ ) ∂ n ′ − G ( x , x ′ ) ∂ ψ ( x ′ ) ∂ n ′ ] d S ′ {\displaystyle \psi (\mathbf {x} )-\int _{\mathbb {U} }\left[G(\mathbf {x} ,\mathbf {x} ')\nabla '^{\,2}\psi (\mathbf {x} ')\right]\,\mathrm {d} V'=\oint _{\partial \mathbb {U} }\left[\psi (\mathbf {x} '){\partial G(\mathbf {x} ,\mathbf {x} ') \over \partial n'}-G(\mathbf {x} ,\mathbf {x} '){\partial \psi (\mathbf {x} ') \over \partial n'}\right]\,\mathrm {d} S'} ; 其中, d V ′ {\displaystyle dV'} 、 d S ′ {\displaystyle dS'} 分別積分 x ′ {\displaystyle \mathbf {x} '} 於 U {\displaystyle \mathbb {U} } 這是格林第三恆等式。假若 ψ {\displaystyle \psi } 是調和函數,即拉普拉斯方程式的解: ∇ ′ 2 ψ ( x ′ ) = 0 {\displaystyle \nabla '^{\,2}\psi (\mathbf {x} ')=0} , 則這恆等式簡化為 ψ ( x ) = ∮ ∂ U [ ψ ( x ′ ) ∂ G ( x , x ′ ) ∂ n ′ − G ( x , x ′ ) ∂ ψ ( x ′ ) ∂ n ′ ] d S ′ {\displaystyle \psi (\mathbf {x} )=\oint _{\partial \mathbb {U} }\left[\psi (\mathbf {x} '){\partial G(\mathbf {x} ,\mathbf {x} ') \over \partial n'}-G(\mathbf {x} ,\mathbf {x} '){\partial \psi (\mathbf {x} ') \over \partial n'}\right]\,\mathrm {d} S'} 。 參閱 向量恆等式列表 數學恆等式列表 (List of mathematical identities) 向量微積分恆等式 (Vector calculus identities) 參考文獻Loading content...Loading related searches...Wikiwand - on Seamless Wikipedia browsing. On steroids.