濾波問題
来自维基百科,自由的百科全书
在隨機過程理論中的濾波問題(Filtering problem)是指針對信號處理及相關領域中,許多狀態估測問題的數學模型。大致概念是從不完整的、可能包括雜訊的觀測值中,建立有關系統真實值的「最佳估測」。最佳非線性濾波問題(甚至也包括非平穩過程問題)由Ruslan L. Stratonovich(1959年[1]、1960年[2])找到解答,在Harold J. Kushner的研究[3]及Moshe Zakai的研究中也有提到,Zakai建立了濾波器在條件機率未歸一情況下的簡化動態模型[4],稱為Zakai方程。不過一般情形下的解是無限維的[5]。
![]() | 此條目需要精通或熟悉相關主題的編者參與及協助編輯。 (2018年11月12日) |
目前已針對一些近似以及一些特定條件有深入的研究。例如在高斯隨機變數的假設下,最佳解是線性濾波器,也稱為維納濾波及卡爾曼濾波。更一般的情形下,其解為無限維度,為了在有限記憶體的電腦中計算,需要進行有限維度的近似,有限維的近似型非線性濾波器比較會以啟發為基礎,例如擴展型卡爾曼濾波器或是假定密度濾波器(Assumed Density Filters)[6],也有更方法論導向的作法,例如Projection Filters[7],其中有些子系列恰好和假定密度濾波器相同[8]。
一般來說,若可以適用分離原理,這些濾波器也可以成為最優控制問題解的一部份。例如在LQG控制最佳控制問題中,其估測部份的解就是卡爾曼濾波。
數學表示
考慮概率空間 (Ω, Σ, P),並且假設在n維度歐幾里得空間 Rn的系統,其在時間t的(隨機)狀態Yt為隨機變量 Yt : Ω → Rn,可以由以下形式伊藤清隨機微分方程的解來求得
其中B是標準p維布朗運動,b : [0, +∞) × Rn → Rn為漂移場(drift field),且σ : [0, +∞) × Rn → Rn×p是擴散場(diffusion field)。假設Rm內在每一個時間的觀測Ht(其中m和n可能不同)由下式決定
配合隨機微分方程的伊藤表示法,令
因此可以得到有關觀測Zt的隨機積分表示式:
其中W表示標準r維的布朗運動,和B和初始條件Y0無關,c : [0, +∞) × Rn → Rn,且 γ : [0, +∞) × Rn → Rn×r
可以在所有t及x,以及特定常數C的情形下,使下式成立:
濾波問題如下:給定在0 ≤ s ≤ t時間內的觀測量Zs for 0 ≤ s ≤ t,依上述觀測值,針對系統真實狀態Yt的最佳估測Ŷt是什麼?
因為「依上述觀測量為基礎」,表示Ŷt是根據Zs觀測量中Σ-代數下的可測函數。令K = K(Z, t) 是所有數值為Rn,平方可積分,而且Gt可量測隨機函數Y的集合:
因為要求是「最佳估測」,表示Ŷt會讓Yt和K集合內所有候選估測值之間的均方差有最小值:
基本結論:正交投影
候選估測值的空間K(Z, t)是希爾伯特空間,根據希爾伯特空間的理論,可以推得最小值問題(M)的解Ŷt可以表示為下式
其中PK(Z,t)表示將L2(Ω, Σ, P; Rn)映射到線性子空間 K(Z, t) = L2(Ω, Gt, P; Rn)的正交投影。而且,有關其條件期望,可知道若F是Σ中的次σ代數,則正交投影
也就是條件期望運算子E[·|F],也就是說
因此
這個基本結果是濾波理論中,廣義Fujisaki-Kallianpur-Kunita方程的基礎。
相關條目
參考資料
Wikiwand - on
Seamless Wikipedia browsing. On steroids.