热门问题
时间线
聊天
视角
過截角正五胞體
来自维基百科,自由的百科全书
Remove ads
過截角正五胞體(又叫正十胞體)是一個四維多胞體, 由10個相同的三維胞截角四面體組成。每條邊連接到兩個六邊形和一個三角形。
過截角正五胞體的五維類比是過截角五維正六胞體。它的n維類比的考克斯特-迪金點圖都是中間的一個或兩個點有環。
Remove ads
投影
![]() 球極投影 (對著一個六邊形面) |
![]() 展開圖 |
坐標
一個棱長為2的過截角正五胞體的20個頂點的笛卡兒坐標系坐標
|
更簡單的,過截角正五胞體的頂點是五維空間笛卡兒坐標系的(0,0,1,2,2)或(1,0,0,0,-1)的全排列。
Remove ads
參考文獻
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1] (頁面存檔備份,存於網際網路檔案館)
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Coxeter, The Beauty of Geometry: Twelve Essays, Dover Publications, 1999, ISBN 0-486-40919-8 p.88 (Chapter 5: Regular Skew Polyhedra in three and four dimensions and their topological analogues, Proceedings of the London Mathematics Society, Ser. 2, Vol 43, 1937.)
- Coxeter, H. S. M. Regular Skew Polyhedra in Three and Four Dimensions. Proc. London Math. Soc. 43, 33-62, 1937.
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. (1966)
- Olshevsky, George, Pentachoron at Glossary for Hyperspace.
- 1. Convex uniform polychora based on the pentachoron - Model 3, George Olshevsky.
- Klitzing, Richard. 4D uniform polytopes (polychora). bendwavy.org. x3x3o3o - tip, o3x3x3o - deca
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads