連續q拉蓋爾多項式(Continuous q-Laguerre polynomials)是一個以基本超幾何函數定義的正交多項式[1]。 3rd order Continuous q Laguerre polynomials P n ( α ) ( x | q ) = ( q α + 1 ; q ) n ( q ; q ) n {\displaystyle P_{n}^{(\alpha )}(x|q)={\frac {(q^{\alpha }+1;q)_{n}}{(q;q)_{n}}}} 3 Φ 2 ( q − n , q α / 2 + 1 / 4 e i θ , q α / 2 + 1 / 4 ∗ e − i θ ; q α + 1 , 0 | q , q ) {\displaystyle _{3}\Phi _{2}(q^{-n},q^{\alpha /2+1/4}e^{i\theta },q^{\alpha /2+1/4}*e^{-i\theta };q^{\alpha +1},0|q,q)} Remove ads極限關係 Q梅西納-帕拉澤克多項式→連續q拉蓋爾多項式 P n ( c o s ( θ + ϕ ) ; q α / 2 + 1 / 2 | q ) = {\displaystyle P_{n}(cos(\theta +\phi );q^{\alpha /2+1/2}|q)=} q ( − α / 2 − 1 / 4 ) ∗ n ∗ P n ( α ) ( c o s θ | q ) {\displaystyle q^{(-\alpha /2-1/4)*n}*P_{n}^{(}\alpha )(cos\theta |q)} 阿拉-薩拉姆-遲哈剌多項式→連續q拉蓋爾多項式 令連續q拉蓋爾多項式中 x = q x {\displaystyle x=q^{x}} ,q→1,即得拉蓋爾多項式 驗證 3階連續q拉蓋爾多項式: lim q → 1 P 3 ( a ) = 1 / 6 a 3 − x a 2 + a 2 + 11 6 a + 2 a x 2 − 5 a x + 1 − 6 x − 4 / 3 x 3 + 6 x 2 {\displaystyle \lim _{q\to 1}P_{3}^{(}a)=1/6\,{a}^{3}-x{a}^{2}+{a}^{2}+{\frac {11}{6}}\,a+2\,a{x}^{2}-5\,ax+1-6\,x-4/3\,{x}^{3}+6\,{x}^{2}} 3階廣義拉蓋爾多項式: L 3 a ( 2 x ) = 1 6 ( a + 1 ) 3 ∗ 1 F 1 ( − n , a + 1 ; 2 x ) {\displaystyle L_{3}^{a}(2x)={\frac {1}{6}}(a+1)_{3}*_{1}F_{1}(-n,a+1;2x)} = 1 / 6 a 3 − x a 2 + a 2 + 11 6 a + 2 a x 2 − 5 a x + 1 − 6 x − 4 / 3 x 3 + 6 x 2 {\displaystyle =1/6\,{a}^{3}-x{a}^{2}+{a}^{2}+{\frac {11}{6}}\,a+2\,a{x}^{2}-5\,ax+1-6\,x-4/3\,{x}^{3}+6\,{x}^{2}} 兩者顯然相等。 Remove ads圖集 CONTINUOUS Q LAGUERRE ABS COMPLEX 3D MAPLE PLOT CONTINUOUS Q LAGUERRE IM COMPLEX 3D MAPLE PLOT CONTINUOUS Q LAGUERRE RE COMPLEX 3D MAPLE PLOT CONTINUOUS Q LAGUERRE ABS DENSITY MAPLE PLOT CONTINUOUS Q LAGUERRE IM DENSITY MAPLE PLOT CONTINUOUS Q LAGUERRE RE DENSITY MAPLE PLOT | |} 參考文獻Loading content...Loading related searches...Wikiwand - on Seamless Wikipedia browsing. On steroids.Remove ads