Chi 函數定義如下[1][2] Chi(x) 2D plot Chi(x) 3D plot C h i ( z ) = ∫ 0 z cosh ( t ) t d t {\displaystyle {\it {Chi}}\left(z\right)=\int _{0}^{z}\!{\frac {\cosh \left(t\right)}{t}}{dt}} C h i ( z ) {\displaystyle Chi(z)} 是下列三階非線性常微分方程的一個解: z d d z w ( z ) − 2 d 2 d z 2 w ( z ) − z d 3 d z 3 w ( z ) = 0 {\displaystyle z{\frac {d}{dz}}w\left(z\right)-2\,{\frac {d^{2}}{d{z}^{2}}}w\left(z\right)-z{\frac {d^{3}}{d{z}^{3}}}w\left(z\right)=0} 即: w ( z ) = _ C 1 + _ C 2 C h i ( z ) + _ C 3 S h i ( z ) {\displaystyle w\left(z\right)={\it {\_C1}}+{\it {\_C2}}\,{\it {Chi}}\left(z\right)+{\it {\_C3}}\,{\it {Shi}}\left(z\right)} Remove ads對稱性 C h i ( − z ) = C h i ( z ) {\displaystyle Chi(-z)=Chi(z)} 表示為其他特殊函數 Meijer G函數 {\displaystyle } − 1 2 π G 1 , 3 2 , 0 ( − 1 / 4 z 2 | 0 , 0 , 1 / 2 1 ) − 1 / 2 i π {\displaystyle {\frac {-1}{2}}\,{\sqrt {\pi }}G_{1,3}^{2,0}\left(-1/4\,{z}^{2}\,{\Big \vert }\,_{0,0,1/2}^{1}\right)-1/2\,i\pi } 超幾何函數 C h i ( z ) = z ∗ 1 F 2 ( 1 , 1 ; 3 / 2 , 2 , 2 ; ( 1 / 4 ) ∗ z 2 ) {\displaystyle Chi(z)=z*_{1}F_{2}(1,1;3/2,2,2;(1/4)*z^{2})} Remove ads級數展 C h i ( z ) = ( γ + ln ( z ) + 1 4 z 2 + 1 96 z 4 + 1 4320 z 6 + 1 322560 z 8 + 1 36288000 z 10 + 1 5748019200 z 12 + 1 1220496076800 z 14 + O ( z 16 ) ) {\displaystyle {\it {Chi}}\left(z\right)=(\gamma +\ln \left(z\right)+{\frac {1}{4}}{z}^{2}+{\frac {1}{96}}{z}^{4}+{\frac {1}{4320}}{z}^{6}+{\frac {1}{322560}}{z}^{8}+{\frac {1}{36288000}}{z}^{10}+{\frac {1}{5748019200}}{z}^{12}+{\frac {1}{1220496076800}}{z}^{14}+O\left({z}^{16}\right))} 圖集 Chi(x) Re complex 3D plot Chi(x) Im complex 3D plot Chi(x) abs complex 3D plot Chi(x) abs complex density plot Chi(x) Re complex density plot Chi(x) Im complex density plot 參見 Sinhc函數 Coshc函數 Tanc函數 Tanhc函數 Shi函數 參考文獻Loading content...Loading related searches...Wikiwand - on Seamless Wikipedia browsing. On steroids.Remove ads