K函數是hyper階乘函數在複數上的擴展,如同Γ函數是階乘函數在複數上的擴展。
K函數的定義為:
![{\displaystyle K(z)=(2\pi )^{(-z-1)/2}\exp \left[{\begin{pmatrix}z\\2\end{pmatrix}}+\int _{0}^{z-1}\ln(t!)\,dt\right].}](//wikimedia.org/api/rest_v1/media/math/render/svg/a4302d3c378d5cd4a16bbb2839841c5c81cbd5ac)
還可以寫成閉合形式:
![{\displaystyle K(z)=\exp \left[\zeta ^{\prime }(-1,z)-\zeta ^{\prime }(-1)\right].}](//wikimedia.org/api/rest_v1/media/math/render/svg/60fa49fafc8612087ae4997082eeda2651a252b1)
其中,
表示黎曼ζ函數的導函數,而
則表示赫爾維茨ζ函數的導函數,即
![{\displaystyle \zeta ^{\prime }(a,z)\ {\stackrel {\mathrm {def} }{=}}\ \left[{\frac {d\zeta (s,z)}{ds}}\right]_{s=a}.}](//wikimedia.org/api/rest_v1/media/math/render/svg/ff76d2f022a344cc7f5707de8ec29ecde8b1ded9)
另一種使用多伽瑪函數的表示形式是:[1]

或者使用廣義多伽瑪函數表示為:[2]

其中A表示格萊舍常數(Glaisher constant)。
K函數與Γ函數和巴尼斯G函數關係密切。對於自然數n,我們有:

還可以更簡單地寫為:

前幾項為:1、4、108、27648、86400000、4031078400000、3319766398771200000……(OEIS中的第A002109號數列).