热门问题
时间线
聊天
视角

多格骨牌

来自维基百科,自由的百科全书

多格骨牌
Remove ads

多格骨牌(Polyomino),又稱多連塊多連方多方塊多連方塊,是由全等正方形連成的圖形,包括四格骨牌五格骨牌六格骨牌等,n格骨牌的個數為(鏡射或旋轉視作同一種):

1, 1, 1, 2, 5, 12, 35, 108, 369, 1285, 4655, 17073, 63600, 238591, 901971, 3426576, 13079255, 50107909, 192622052, 742624232, 2870671950, ... (OEIS數列A000105

除了n=0, 1, 2的顯然易見的條件以外,只有n=5的時候才能用所有的n格骨牌填滿一個長方形(見五格骨牌#長方形填充),n=3的情形顯然無解,對n=4和n=6無解的證明需要使用肢解西洋棋盤問題的概念,而時,n格骨牌中有些骨牌的中間有空洞,因此也無解。

Thumb
12個五格骨牌形成一個8×8平方,刪除中間的2x2平方
Thumb
35個六格骨牌(两面),不考慮對稱相同則有60個片面骨牌。[1] 不同顏色代表不同对称性类型。
Thumb
94個六格骨牌的密铺
Remove ads

列表

Thumb
7種片面四格骨牌 = 4)
Thumb
12種両面五格骨牌 = 5)。每個骨牌使用一个拉丁字母的字母。

多格骨牌有三种,以对称分类:

  1. 自由(两面)骨牌(刚体):平移转动反射Glide reflection英语Glide reflection;可以包括洞以及單連通(无洞)的骨牌
  2. 一片面:平移转动(不可反射)
  3. 固定(有向):平移(不可转动、不可反射)
更多信息 ...
Remove ads

计算算法

渐近分析

若A(n)是自由n格骨牌的总数,則有猜想說明

其中。但是这个是未解决的问题,缺乏证明。[7]

但是有证明表示A為指數增長[8][9]

密铺

這些問題有些是NP完全的,或與递归集合有關。

平面

任何少於或等於六格的骨牌都可以鋪滿整個平面,因為它們都滿足康威準則,而在全部108種七格骨牌中,有101種滿足康威準則,有104種可以鋪滿整個平面,另外4種(包括唯一一個中間有洞的那種)無法鋪滿整個平面,至於369種八格骨牌則有320種滿足康威準則,有343種可以鋪滿整個平面;1285種九格骨牌中則有960種滿足康威準則,有1050種可以鋪滿整個平面。

长方形

Thumb
L骨牌有次数2

若需要至少n個多格骨牌P覆盖任何长方形(或矩形的格子),则n是P的次数(order)。若一個多格骨牌不可以覆盖(如Z形的四格骨牌),則其次数是未定义的。[11][1][12]

Thumb
可以使用11個六格骨牌密铺长方形

L形骨牌有次数2。[13]

次数的骨牌存在(n是整数)。[12]

次数3的骨牌不存在。[14][12]

可不可以使用5、7或9個骨牌密铺一个长方形這個問題仍未解答。有次数2的骨牌P,可以使用11個P覆盖一个更大的长方形。[15][1][12]

更大奇数次数的骨牌存在。[16][17]

截至2020年,有两个未解决的问题:

  • 奇数次数的多格骨牌存在嗎?
  • 若可以用n個骨牌密铺一个长方形,且n是奇数,最小的n為何?现在已知n最多為11。
Remove ads

謎題和遊戲

最小面积

若可以用骨牌A覆盖每個n格骨牌,则A是共同超形式(common superform、CS)。若A是共同超形式中面积最小的那個,则A是最小共同超形式(minimal common superform、MCS)。比如,五格骨牌的MCS是下面两個九格骨牌。无论P是哪一個五格骨牌,P都可以放在这两個骨牌裡。[1][12][18]

  ###     ###
#####    #####
  #       #

參見

參考文獻

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads