热门问题
时间线
聊天
视角

星等

標度 来自维基百科,自由的百科全书

星等
Remove ads

星等(英語:magnitude),為天文学术语,是指星体在天空中的相对亮度。一般而言,这也指“视星等”,即为从地球上所见星体的亮度。在地球上看起来越亮的星体,其视星等数值就越低。常见情况下人们使用可见光来衡量视星等,但在科学探测中,红外线等其它波段也有用到。不同波段探测到的星等数据会有所不同。一颗星星的星等,取决于它离地球的距离、它本身的光度(即为绝对星等)、星际尘埃遮蔽等多重因素。一般人的肉眼能够分辨的极限大约是6.5等。

Thumb
天狼星的星等约为-1.47等,是全天空最明亮的恒星之一

视星等

更多信息 人眼是否 可见, 视星等 ...
Thumb
从火星表面上看到的太阳視星等约为−25.60。
Thumb
从地球上看月亮最亮时視星等可达到−12.92。
Thumb
从地球上看猎户座参宿四視星等约為0.42。
Thumb
从地球上看仙女座星系視星等约為4.36,需要在光污染较少的地区才能被肉眼所见。
Thumb
从地球上看三角座星系視星等约為5.72—6.3,接近人类肉眼可辨认的极限。
Thumb
从地球上观测后发座NGC 4414視星等约為11.0。
Thumb
小行星原神星(图片右下角)視星等约為11.6,必须使用望远镜才能看到。
Thumb
手枪星的視星等虽名义上有4,但由于星际尘埃的消光,实际在我们眼中比一般星系还要暗。
Thumb
哈伯极深空中,最暗的星系視星等為30,只有肉眼可分辨光度下限的一百亿分之一。

视星等(英語:apparent magnitude,符號:m)最早是由古希腊天文学家喜帕恰斯制定的,他把自己编制的星表中的1022颗恒星按照亮度划分为6个等级,即1等星到6等星。1850年英国天文学家普森发现1等星要比6等星亮100倍。根据这个关系,星等被量化。重新定义后的星等,每级之间亮度则相差2.512倍,1勒克司(照度单位)的视星等为-13.98。[2]

但1到6的星等并不能描述当时发现的所有天体的亮度,天文学家延展本來的等級──引入「负星等」概念。这样整个视星等体系一直沿用至今。如牛郎星为0.77,织女星为0.03,除了太陽之外最亮的恒星天狼星为−1.44,太阳为−26.7,满月为−12.8,金星最亮时为−4.89。现在地面上最大的望远镜可看到24等星,而哈勃望远镜则可以看到30等星。

因为视星等是人们从地球上观察星体亮度的度量,它实际上只相当于光学中的照度;因为不同恒星与地球的距离不同,所以视星等并不能指示出恒星本身的发光强度。

由于视星等需要同时考虑星体本身光度与到地球的距离等多重因素,会出现距离地球近的星体视星等不如距离远的星体的情况。例如巴纳德星距离地球仅6光年,却无法被肉眼所见(9.54等)。

如果人们在理想環境下(清澈、晴朗且没有月亮的夜晚),肉眼能观察到的半個天空平均约3000颗星星(至6.5等計算),整个天球能被肉眼看到的星星則约有6000颗。大多数能为肉眼所见的星星都在数百光年内。现在人类用肉眼可以看见的最远天体是三角座星系,其星等约为6.3,距离地球约290万光年。历史上肉眼能看见的最远天体是GRB 080319B在2008年3月19日的一次伽玛射线暴,距离地球达到75亿光年,视星等达到5.8,相当于用肉眼看见那里75亿年前发出的光。[3]

另外,宇宙中大量的星际尘埃也会影响到星星的视星等。由于尘埃的遮蔽,一些明亮的星星在可见光上将变得十分暗淡。有一些原本能为肉眼所见的恒星变得再也无法用肉眼看见,例如银河系中心附近的手枪星[4]

星星的视星等也随着星星本身的演化、和它们与地球的距离变化而变化当中。例如,当超新星爆发时,星体的视星等有机会骤增好几个等级。在未来的几万年内,一些逐渐接近地球的恒星将会显著变亮,例如葛利斯710在约一百万年后将从9.65等增亮到肉眼可见的1等。

更多信息 视星等级, 对应天体 ...
Remove ads

绝对星等

由于视星等需要考虑星体光度、距离、星际尘埃遮蔽等多重因素,因此仅凭视星等衡量恒星本身亮度是不客观的。只有从已知的距离观察一个恒星得到的亮度,才能确定它自身的发光强度,并用来与其他星体进行比较。我们把从距离星体10个秒差距(32.6光年)的地方看到的目视亮度(也就是视星等),叫做该星体的绝对星等(英語:absolute magnitude,符號:M)。按照这个度量方法,牛郎星为2.19等,织女星为0.5等,天狼星为1.43等,太阳为4.8等。

絕對星等視星等的換算:

M = m + 5 - 5 log d,

其中M為絕對星等,m為視星等,d為以秒差距為單位的恆星距離。

因为行星小行星彗星等天体只能依靠反射星光才能看到,即使从固定的距离观察,它们的亮度也会不同,所以行星、小行星、彗星的绝对星等需要另外定義。行星的绝对星等定义为“天体在距离太阳和地球的距离都为一个天文单位(au),且相位角为0°时,呈现的视星等”。

Remove ads

各种类型的星等

以下列举使用不同的观测手段或关注的领域的星等。它们都有视星等和绝对星等之分。除此之外,还有AB星等(AB magnitude)和基于织女一的Vega星等。各种数据库,比如SDSS,会说明自身的星等标准。

光电星等

Thumb
LBV 1806-20由于躲藏在尘埃云后,在可见光下仅有35等,然而在穿透力较强的红外线下可测出8等。灵活使用不同波长将对观测这类天体大有帮助

最常用的光电星等系统是UBV系统。

UBV系统包括对天体在三个波长段的辐射测量,传统上通过在检测系统前放置标准滤光片实现:

  • U:波长360纳米(nm)左右,测量近紫外线成份,所得为紫外星等。
  • B:波长440nm左右,测量蓝色成分,所得为蓝色星等(蓝等,英文Blue magnitude)。
  • V:波长550nm左右,测量黄、绿色成分,和人眼所见亮度接近,所得为可见星等。天文文献中,不特别说明的星等一般是可见星等。

它们之间的换算可以表示为

M=-2.5 log10 E -5log10 r + 常数

其中M为绝对星等,E为照度,在国际单位制中的单位是坎德拉/米2;r为天体距离,常数的定义目前为太阳的可见绝对星等MU=5.61, MB=5.84, MV=4.83[24]

其它波段也可以测量星等。例如SDSS可以测量五种波段的星等:紫外(u),绿色(g),红色(r),近红外(i)和红外(z)。各个测出的数值都不相同。在某些有特殊需求的场合(例如穿透尘埃云),这些波段将大有作用。

Remove ads

其它標準

波格森的系統下,恆星織女星被用作基本參考星,無論量測科技或波長濾波器如何,視星等都定義為。這就是為什麼比織女星更亮的天體,比如天狼星(以織女星為標準的星等為 − 1.46或 − 1.5)具有負星等。然而,在二十世紀末,人們發現織女星的亮度有所不同,因此不適合作為絕對參考,所以參考系統被現代化,不再依賴於任何特定恆星的穩定性。這就是為什麼織女星的星等在現在很接近,但不再完全為零,而是在可見光(V,視覺)波段為0.03[25]。 當前的絕對參考系統包括AB星等系統,其中參考的是各個頻率具有恆定通量密度的源,以及STMAG系統,其中參考源被定義為各個波長具有恆定通量密度[來源請求]

分貝

强度的另一個對數標度是分貝。雖然它通常用於聲音强度,但也用於光强度。它是光電倍增管的一個參數,也是望遠鏡和顯微鏡等類似相機的光學元件的一個參數。強度為10的每個因數對應於10分貝。特別是,強度為100的乘數對應於20分貝的增加,也對應於幅度減少5分貝。通常,分貝的變化與星等的變化有關

例如,比參考值大1個星等(更暗)的對象將產生比參考值小4 dB的訊號,這可能需要通過將相機的能力新增盡可能多的分貝來補償。

Remove ads

参考文献

参看

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads