热门问题
时间线
聊天
视角
線性關係
来自维基百科,自由的百科全书
Remove ads
在现代学术界中,線性關係一詞存在2种不同的含义。其一,若某數學函數或数量关系的函数图形呈現為一條直線或線段,那么这种关系就是一种線性的關係。其二,在代数学和数学分析学中,如果一种运算同时满足特定的“可加性”和“齐次性”,则称这种运算是线性的。
定义
如果稱一個数学函數為線性的,可以是指:
需要注意这2种定义分别描述的是2类不同的事物。研究高等数学的数学家一般只认定义2(有例外,如高等数学“线性回归”理论中“线性函数”概念的定义),但初等数学和许多非数学学科的书籍会习惯把定义1当作线性关系的概念(有的没有明确给出定义,但确是如此理解和使用的)。这种术语间的细微差异如果不注意的话,就容易引起混淆。[1]
定义1的定义动机是把函数图像为直线的数量关系称作线性的关系。从这种几何意义出发,定义1本来不具有对多元函数进行推广的必要,因为形如的函数(其中各个和均為常数)的图形根本不是直线,而是平面或超平面,因此也就谈不上“线”性了。但还是有这种做法出现,如有“多元线性方程组”的叫法[2](叫“多元超平面方程组”可能更合适)。
但是,如果只考慮二維實數平面,則定義1可藉由坐標移軸之後而符合定義2的型式。故要視定義1.為線性,實質上需要嚴格的限制條件,或者說,定義1其實是由定義2在受到某些條件限制下所產生的變化形式。
Remove ads
例子
- 按照定义1,一次函数描述的都是不同变量间的线性的数量关系。而高次函数描述的都不是线性的数量关系。比如,和都属于这种意义下的线性函数,但,,和则不是。(如果将这种意义下的“线性”概念推广到多元函数,则也能算。事实上,“多元线性回归”中的“线性”指的就是这种线性。)
- 而按照定义2,若以一元函数为例,则截距为0的一次函数(即正比例函数)属于线性函数,但截距不为0的一次函数不属于线性函数。又如,和都属于这种意义下的线性函数,但,,和都不是。
Remove ads
數學
在初等数学中(主要是与方程组及一次函数有关的理论),使用的是定义1。
但在高等数学(尤其是纯数学)中所说的线性一般是用定义2来给出定义。如对线性相关和线性变换的定义。但初等数学中有关“线性”的一些习惯术语也然在高等数学沿用,如线性回归。
物理
在物理学中,线性的2种含义都有出现。“线性”如果是源于形容图像的形状,则其含义按定义1理解。比如线性元件的概念。[3]一般在需要作图的实验物理学中会经常遇到这种含义,尤其是中学物理。[4][5][6][7][8][9]“线性”如果是涉及数学分析学(比如说高等线性代数(即线性泛函分析)或微分方程理论)的概念,则其含义按定义2理解。一般在用到较多高深数学的理论物理学中会经常遇到这种含义。
应用
直线的图像容易分辨。斜率和截距通常也是变量的函数,通过测定斜率和截距,可以推知一些主要变量的数值。对于某些非直线的函数关系,比如(假定是未知的常系数),如果要验证实验所得的数据是否符合该非线性关系式,直接描点连线作图是难以直观地判断出数据与假设关系式的接近程度的(画出来是个抛物线)。这时可以尝试使用变量替换的方法,把非线性关系转换为线性关系,从而便于作图,也便于判断。对等式两边同时取对数可得,作代换,则可得。这时再作图,就容易看出数据和假设模型的偏离程度,还可以根据截距b估算出参数k的数值。这种将非线性关系转换为线性关系后再作图的方法只适用于少数函数,但因为作图的结果一目了然,所以是一种重要的数据处理方法。
Remove ads
另見
脚注与参考资料
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads