Zlatni rez
From Wikipedia, the free encyclopedia
Remove ads
U matematici i umjetnosti, dvije veličine su u zlatnom rezu ako je omjer između sume te dvije veličine i veće od njih jednak sa odnosom veće veličine sa manjom veličinom. Zlatni rez je matematička konstanta, koja približno iznosi 1,6180339887.[1]

Najkasnije od Renesanse, mnogi umjetnici i arhitekte su nastojali svoje radove praviti prema pravilima zlatnog reza, posebno u obliku zlatnog pravougaonika, u kojem je omjer duže stranice naspram dužine kraće stranice zlatni rez, a vjerovalo se da je ova proporcija estetski zadovoljavajuća. Matematičari su proučavali zlatni rez zbog njegovih jedinstvenih i interesantnih osobina.
Zlatni rez se često označava sa grčkim slovom ϕ (fi). Izgled zlatnog isječka ilustrira geometrijsku vezu koja definiše ovu konstantu. Izraženo algebarski:
Ova jednačina ima, kao jedinstveno, pozitivno rješenje, algebarsko iracionalan broj
Ostali nazivi, koji se koriste za ili za zlatnom rezu srodne pojmove, su zlatni isječak (latinski: sectio aurea), zlatna sredina, zlatni broj i grčko slovo fi (ϕ).[2][3][4] Ostali termini, koji se susreću, jesu ekstremni i srednji omjer, medijalni isječak, božanska proporcija, požanski isječak (latinski: sectio divina), zlatna proporcija, zlatni omjer,[5], te Fidiasova sredina.[6][7][8]

1. Konstruišite jedinični kvadrat (crveno).
2. Povucite liniju sa sredine jedne stranice u suprotan ugao.
3. Iskoristite tu liniju kao radijus kako bi nacrtali luk koji definiše dužu dimenziju pravougaonika.
Remove ads
Historija
Teorija zlatnog reza započeta je u antici, a svoj procvat imala je u renesansi kada su umjetnici, matematičari, fizičari i astrolozi tražili savršenstvo u kompozicijama poznatih struktura.
Herodot (484. - 424. pne) „Jedan egipatski svećenik govoreći o obliku Keopsove piramide spomenuo mi je da je kvadrat nad njezinom visinom jednak površini bočnog trougla“

Grčki kipar Fidije u V vijeku pne.. primijenio je zlatni rez u dizajnu svojih skulptura i gradnji Partenona.
Platon (grčki filozof, V. i IV. vijek pne.) u „Timoteju“ opisuje pet pravilnih geometrijskih tijela kao osnovu harmonične strukture svijeta. Zlatni rez igra ključnu ulogu u dimenzijama i oblikovanju nekih od ovih tijela.
Pitagorejci (oko 500. god.pne.) dolaze do jednog od najvažnijih otkrića u matematici: - dijagonala i stranica kvadrata ( pravilnog peteugla) su nesamjerljive

Grčki matematičar Euklid prvi je ovaj broj uočio i matematički izrazio. Oko 300 godina prije Krista napisao je knjigu „Elementi“ u kojoj navodi prvu zabilježenu definiciju zlatnog reza.
Datu dužinu podijeliti tako da pravougaonik obuhvaćen cijelom dužinom i jednim odsječkom,bude jednak kvadratu na drugom odsječku.
Sva znanja starih Grka objedinio je rimski arhitekt Marko Vitruvije u djelu De architectura libri decem ili Deset knjiga o arhitekturi, posvećenom imperatoru Augustu. Pisao je o simetriji hramova, a njihove proporcije upoređuje s razmjerima čovječijeg tijela. Vitruvije je ucrtao ljudsko tijelo u kružnicu, što je kasnije ponovo interpretirao Leonardo Da Vinci
Fra Luca Pacioli (1446–1510) štampao je u Veneciji 1509. djelo De divina proportione, koje je imalo veliki uticaj i nakon kojeg zlatni rez doživljava pravu renesansu. U njemu opisuje harmonijske osobine “božanske razmjere". Knjigu je ilustrirao Leonardo da Vinci.
Martin Ohm 1835. g. u drugom izdanju udžbenika Die reine Elementar -Mathematik ( Čista elementarna matematika) prvi put koristi termin zlatni rez.
Oznaku je 1909. predložio američki matematičar Mark Barr u čast slavnom starogrčkom kiparu Fidiji (Phidias 480–430. p. n. e.)
Remove ads
Izračunavanje
Spisak brojeva γ - ζ(3) - √2 - √3 - √5 - φ - α - e - π - δ | |
Binarni | 1.1001111000110111011... |
Decimalni | 1,6180339887498948482... |
Heksadecimalni | 1.9E3779B97F4A7C15F39... |
Neprekidni razlomak | |
Algebarski oblik |
Za dvije veličine (pozitivni brojevi) a i b se kaže da su u zlatnom rezu ϕ ako vrijedi
Ova jednačina jednoznačno definiše ϕ.
Desna jednačina pokazuje da je a = bϕ, što se može zamijeniti u lijevi dio, dajući
Poništavanjem b na obe strane, dobijamo
Množenjem obe strane sa ϕ i premještanjem članova vodi do:
Jedino pozitivno rješenje ove kvadratne jednačine je
Remove ads
Prikazi broja φ {\displaystyle \varphi }
Remove ads
Također pogledajte
- Estetika
- Zlatni ugao
- Zlatna funkcija
- Zlatni pravougaonik
- Zlatni teougao (matematika)
- Traženje zlatnog isječka
- Fi
- Keplerov trougao
- Logaritamska spirala
- Fibonaccijev broj
- Modulor
- Sveta geometrija
- Ruže Heliogabalusa
- Plastični broj
- Penroseovo popločanje
- Dinamička simetrija
- Baza zlatnog reza
- Vitruvijev čovjek
- Kvadratni korijen od 5
- Srebrni rez
- Spisak radova dizajniranih sa zlatnim rezom
Reference i fusnote
Dalje čitanje
Vanjski linkovi
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads