Aquakomplexy kovů

From Wikipedia, the free encyclopedia

Remove ads

Aquakomplexy kovů jsou komplexní sloučeniny obsahující kationty kovů, kde jako ligandy slouží molekuly vody. Jedná se o hlavní formu mnoha solí, například dusičnanů, síranů a chloristanů, ve vodných roztocích. Dají se popsat obecným vzorcem [M(H2O)n]z+. Jejich vlastnosti mají význam pro řadu oborů, jako jsou biochemie a průmyslová chemie. V tomto článku jsou popsány komplexy, kde je voda jediným ligandem (homoleptické aquakomplexy), ale existuje i mnoho komplexů, které kromě aqua- obsahují i jiné ligandy.[1][2]

Remove ads

Stechiometrie a struktura

Hexaaquakomplexy

Thumb
Struktura oktaedrického aquakomplexu
Thumb
Vodný roztok chromnaté soli

Většina aquakomplexů je jednojaderných a odpovídá obecnému vzorci [M(H2O)6] +
n
 , kde n = 2 nebo 3; jejich molekulová geometrie je oktaedrická. Molekuly vody účinkují jako Lewisovy zásady, které dodávají elektronové páry na ionty kovu a vytváří tak s nimi kovalentní vazby. V následující tabulce je zobrazeno několik příkladů.

Další informace Komplex, barva ...

Tuttonovy soli jsou krystalické sloučeniny s obecným vzorcem (NH4)2M(SO4)2*(H2O)6 (M = V2+, Cr2+, Mn2+, Co2+, Ni2+ nebo Cu2+). Také jsou známy podvojné hexaaqua soli typu MM′(SO4)2(H2O)12

Tetraaquakomplexy

Stříbrné soli vytváří neobykle tetraedrické aquaionty [Ag(H2O)4]+.[6] U palladnatých a platnatých iontů se předpokládalo, že jejich aquakomplexy jsou čtvercově rovinné.[7]

Okta- a nonaaquakomplexy

Aquakomplexy trojmocných lanthanoidů mívají koordinační čísla 8 a 9, což odpovídá větším rozměrům jejich kovových center.

Dvojjaderné aquakomplexy

Thumb
Struktura [Co2(OH2)10]4+; červená = O, bílá = H, modrá = Co.

V dvojjaderném iontu [Co2(OH2)10]4+ každá můstková molekula vody dodává jeden pár elektronů na první a druhý na další kobaltnatý ion. Co-O můstky mají délku 213 pm a délky koncových vazeb Co-O jsou o 10 pm menší.[8]

Komplexy [Mo2(H2O)8]4+ a [Rh2(H2O)104+ obsahují vazby kov-kov.[6]

Hydroxo- a oxo- komplexy aquaiontů

Monomerní aquakomplexy Nb, Ta, Mo, W, Mn, Tc, Re a Os v oxidačních číslech +4 až +7, jako například [Ti(H2O)6]4+, nejsou známy;[7] ve zředěných roztocích se vyskytují hydrolyzované částice [Ti(OH)2(H2O)n]2+.[9] Při vyšších oxidačních číslech se efektivní elektrické náboje kationtů dále snižují tvorbou oxokomplexů, například vanadičné ionty vytvářejí vanadylové komplexy. Hypotetická reakce

[V(H2O)6]5+ → [VO(H2O)5]3+ + 2 H+

probíhá úplně a hexaaquaion v roztocích vanadičných solí nelze zachytit. Od chromových a manganistých iontů jsou známy pouze oxyanionty.

Remove ads

Reakce

K základním reakcím aquaiontů obsahujících kovy patří výměny ligandů, přenosy elektronů a acidobazické reakce.

Výměna vody

K výměnám ligandů u aquakomplexů patří přechod vody z ligandu do roztoku. Voda zapojená do takového děje se často značí H2O*:

M(H2O) z+
n
  + H2O*  M(H2O)n−1H2O *
z
  + H2O

Bez izotopového značkování je reakce degenerovaná (změna entalpie je rovna nule).

Rychlosti reakcí se mohou lišit o několik řádů. Vliv na ně má zejména náboj: více nabité aquakationty vyměňují vodu pomaleji než kationty s jednoduchým nábojem. U [Na(H2O)6]+ probíhá 109krát rychleji než u [Al(H2O)6]3+. Významná je z tohoto hlediska také elektronová konfigurace, což se například projevuje tím, že rychlost výměny vody u [Al(H2O)6]3+ je také 109krát rychlejší než u [Ir(H2O)6]3+.[4]

Výměna vody obvykle probíhá disociativní substitucí, rychlostní konstanty naznačují, že jde o reakci prvního řádu.

Výměny elektronů

Výměny elektronů se obvykle projevují vzájemnými přeměnami dvoj- a trojvazných iontů kovů, kdy se vyměňuje jediný elektron. Ion přitom zdánlivě vyměňuje elektrony sám se sebou. V následující tabulce jsou uvedeny standardní elektrodové potenciály reakcí tohoto typu:

[M(H2O)6]2+ + [M(H2O)6]3+ ⇌ [M(H2O)6]3+ + [M(H2O)6]2+
Další informace V, Cr ...

Tyto hodnoty ukazují na rostoucí stabilitu nižších oxidačních čísel při růstu atomových čísel. Vysoká hodnota u manganu je způsobena tím, že oktaedrický manganatý komplex má nulovou stabilizační energii krystalového pole, zatímco manganitý jej má na hodnotě 3 jednotek.[10]

Uvedenou výměnu lze popsat rovnicí:

[M(H2O)6]2+ + [M*(H2O)6]3+ → [M*(H2O)6]3+ + [M(H2O)6]2+

Rychlosti výměn elektronů se mohou výrazně lišit, což lze přičíst rozdílům v reorganizačních energiích: pokud má dvojmocný kation strukturu výrazně odlišnou od trojmocného, tak probíhají pomalu.[11]

Přenos elektronu probíhá ve vnější sféře. Vysoké reorganizační energie jsou obvykle spojené se změnami populace na úrovni eg, přinejmenším u oktaedrických komplexů.

Acidobazické reakce

Roztoky aquakomplexů jsou kyselé, protože dochází k ionizaci protonů v ligandech. Ve zředěných roztocích má chromitý aquakomplex pKa přibližně 4,3:

[Cr(H2O)6]3+ ⇌ [Cr(H2O)5(OH)]2+ + H+

Aquaion je tak slabou kyselinou, podobnou kyselině octové s pKa kolem 4,8. Tyto hodnoty pKa jsou pro trojmocné ionty běžné. Vliv elektronové konfigurace na kyselost lze ukázat na tom, že [Ru(H2O)6]3+ (pKa = 2,7) je kyselejší než [Rh(H2O)6]3+ (pKa = 4), přestože by rhoditý komplex měl být více elektronegativní. Tyto výsledky souvisí se stabilizací pí-donorového hydroxidového ligandu t2g)5 ruthenitého centra.[6]

V koncentrovaných roztocích probíhají u některých hydroxokomplexů kondenzační reakce, nazývané olace, kdy vznikají polymery; takto například pravděpodobně vzniká řada minerálů. Aquakomplexy dvouvazných iontů jsou méně kyselé než au iontů trojvazných.

Hydrolyzované ionty mají často jiné vlastnosti než jejich hexaaqua prekurzory, například výměna vody u [Al(H2O)5OH]2+ je 20 000krát rychlejší než u [Al(H2O)6]3+.

Remove ads

Odkazy

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads