Elektrocyklická reakce

druh pericyklické přesmykové reakce From Wikipedia, the free encyclopedia

Remove ads

Elektrocyklická reakce je druh pericyklické přesmykové reakce, při níž dojde k přeměně jedné vazby  na vazbu sigma nebo naopak.[1] Dělí se na různé typy, a to podle následujících hledisek:

  • Reakce může být fotochemická i tepelná
  • Může dojít k otevření cyklu nebo k jeho vytvoření
  • V závislosti na typu (fotochemická nebo tepelná) a počtu pí elektronů může reakce probíhat konrotačním nebo disrotačním mechanismem; na druhu rotace závisí, zda produkt vznikne jako cis- nebo trans-izomer.
Remove ads

Příklady

Nazarovova cyklizační reakce je elektrocyklická reakce, při níž se divinylketony přeměňují na cyklopentenony. Dalším příkladem elektrocyklické reakce je tepelné otevření cyklu 3,4-dimethylcyklobutenu. Z cis izomeru vzniká cis,trans-hexa-2,4-dien, zatímco produktem přeměny trans izomeru je trans,trans-dien.[2]

Thumb

Uvedenou selektivitu reakce lze vysvětlit analýzou pomocí teorie hraničních molekulových orbitalů: vazba sigma v reaktantu se otevře takovým způsobem, aby vzniklé p orbitaly měly stejnou symetrii jako HOMO produktu.

Thumb

Remove ads

Stereospecificita elektrocyklických reakcí

Při provádění elektrocyklických reakcí je často žádoucí možnost předvídat cis-trans geometrii produktu. Její určování začíná zjištěním, zda bude reakce probíhat konrotačně nebo disrotačně. V následující tabulce jsou shrnuta pravidla selektivity tepelných a fotochemických elektrocyklických reakcí:

Další informace Systém, Tepelná reakce (základní stav) ...

U níže uvedeného příkladu probíhá tepelná reakce (trans,cis,trans)-okta-2,4,6-trienu disrotačním mechanismem. Pté lze geometrii produktu určit zkoumáním výchozí molekuly. Zde disrotace způsobuje, že se obě methylové skupiny nacházejí nahoře, což vede k cis-dimethylcyklohexadienu.

U konrotačních reakcí však může rotace probíhat ve dvou různých směrech, čímž se vytváří enantiomerní produkty.

Thumb
Disrotační uzavírání cyklu
Remove ads

Mechanismus tepelných reakcí

Woodwardova-Hoffmanova pravidla

Thumb

Pro každý z obou typů elektrocyklické reakce lze vytvořit korelační diagram, který spojuje molekulové orbitaly reaktantu s orbitaly produktu, které mají stejnou symetrii.[3]

Thumb

Z těchto diagramů vyplývá, že symetrií je povoleno pouze konrotační otevírání cyklu 3,4-dimethylcyklobutenu a pouze disrotační otevírání 5,6-dimethylcyklohexa-1,3-dienu. Pouze v takových případech totiž v přechodném stavu dochází k maximálnímu překryvu orbitalů a produkt se vytvoří v základním stavu místo excitovaného.

Teorie hraničních molekulových orbitalů

Podle teorie hraničních molekulových orbitalů se vazba sigma v cyklu otevře takoovým způsobem, aby měly vytvořené p orbitaly stejnou symetrii jako HOMO produktu.[4]

Thumb

Při přeměně 5,6-dimethylcyklohexa-1,3-dienu k tomu dojde jenom při disrotační reakci, avšak u 3,4-dimethylcyklobutenu jen tehdy, když je reakce konrotatorní.

Mechanismus fotochemických reakcí

Pokud bude otevírání cyklu 3,4-dimethylcyklobutenu řízeno fotochemicky, tak bude elektrocyklizace probíhat disrotačně, tak, jak je znázorněno na korelačním diagramu:

Thumb

Pouze disrotační mechanismus zde povede k maximálnímu překryvu orbitalů. Excitovaný stav produktu tak bude podobně stabilní jako excitovaný stav výchozí látky.

Elektrocyklické reakce v organismech

K elektrocklickým reakcím často dochází i v přírodě,[5] například při biosyntéze vitaminu D3:

Thumb

Prvním krokem syntézy je fotochemické konrotační otevírání cyklu 7-dehydrocholesterolu za vzniku provitaminu D3. Následným [1,7]-hydridovým posunem se vytváří vitamin D3.

Dalším případem je předpokládaná biosyntéza aranotinu, přírodního oxepinu, a podobných sloučenin:

Thumb

Enzymatickou epoxidací diketopiperazinu odvozeného od fenylalaninu vzniká arenoxid, u kterého následně proběhne 6π disrotační elektrocyklická reakce za vzniku oxepinu. Po opětovné epoxidaci kruhu blízký nukleofilní dusík atakuje elektrofilní uhlík za vzniku petičlenného cyklu. Tento cyklus je běžným systémem v molekulách aranotinu a dalších látek.

Benzokaradienový diterpenoid (A) se přesmykuje na benzocykloheptatrienový isosalvipuberlin (B) při zahřívání svého roztoku v dichlormethanu. Tato přeměna zahrnuje disrotační elektrocyklickou reakci , po níž proběhnou dva suprafaciální 1,5-sigmatropní posuny vodíků.[6]

Thumb

Remove ads

Elektrocyklické reakce v organické syntéze

Často zkoumanou elektrocyklickou reakcí je konrotační tepelné otevírání cyklu benzocyklobutenu. Produktem je velmi nestabilní ortho-chinodimethan, který ale může reagovat se silným dienofilem, například maleinanhydridem, za tvorby Dielsova–Alderova adduktu. Výtěžnost této reakce zobrazená na n závisí na vlastnoásledujícím obrázkustech substituentu R.[7] Při použití toluenu či podobné látky jako rozpouštědla a za teploty 110 °C výtěžnost roste od methylové přes isobutylmethylovou až k trimethylsilylmethylové skupině. Vyšší výtěžnost u trimethylsilylových sloučenin je možné vysvětlit hyperkonjugací, ke které dochází, protože vazba βC-Si dodáváním elektronů oslabuje vazbu C-C v cyklobutanu.

Thumb
Otevírání cyklu benzocyklobutanu

V souvislosti s izolací a syntézou některých endiandrových kyselin byla objevena biomimetická electrocyklická řetězová reakce.:[8][9]

Thumb
Elektrocyklizace při syntéze endrianových kyselin

Významnou oblastí výzkumu v organické syntéze jsou asymetrické elektrocyklické reakce. Nejčastěji se zkoumají 4π Staudingerova syntéza β laktamů[10] a 4π Nazarovovy reakce; asymetrické katalýzy obou reakcí se dosahuje využitím chirálních pomocníků, u Nazarovovy reakce se používají chirální Lewisovy kyseliny, Brønstedovy–Lowryho kyseliny a chorální aminy.[11]

Remove ads

Reference

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads