Mae fformiwla Euler yn nodi fod: e i θ = cos ( θ ) + sin ( θ ) i {\displaystyle e^{i\theta }=\cos(\theta )+\sin(\theta )i\,} Portread 1753 gan Emanuel Handmann o Leonhard Euler. Mae'n bosibl fod ganddo broblem ar ei lygad dde (strabismus o bosib)..[1] ble mae i {\displaystyle i} yn rhif dychmygol sydd yn sgwario i roi − 1 {\displaystyle -1} . Daw'r enw "fformiwla Euler" ar ôl y mathemategydd Leonhard Euler. Remove adsPrawf Mae hyn yn deillio o ehangiadau Cyfres Taylor sy'n nodi fod: e x = 1 + x + x 2 2 ! + x 3 3 ! + x 4 4 ! + x 5 5 ! + x 6 6 ! + x 7 7 ! + . . . + x p p ! {\displaystyle e^{x}=1+x+{\frac {x^{2}}{2!}}+{\frac {x^{3}}{3!}}+{\frac {x^{4}}{4!}}+{\frac {x^{5}}{5!}}+{\frac {x^{6}}{6!}}+{\frac {x^{7}}{7!}}+...+{\frac {x^{p}}{p!}}} cos θ = 1 − θ 2 2 ! + θ 4 4 ! − θ 6 6 ! + . . . + ( − 1 ) p θ 2 p ( 2 p ) ! + . . . {\displaystyle \cos {\theta }=1-{\frac {\theta ^{2}}{2!}}+{\frac {\theta ^{4}}{4!}}-{\frac {\theta ^{6}}{6!}}+...+{\frac {(-1)^{p}\theta ^{2p}}{(2p)!}}+...} sin θ = θ − θ 3 3 ! + θ 5 5 ! − θ 7 7 ! + . . . + ( − 1 ) p θ 2 p + 1 ( 2 p + 1 ) ! + . . . {\displaystyle \sin {\theta }=\theta -{\frac {\theta ^{3}}{3!}}+{\frac {\theta ^{5}}{5!}}-{\frac {\theta ^{7}}{7!}}+...+{\frac {(-1)^{p}\theta ^{2p+1}}{(2p+1)!}}+...} Wedyn o gyfnewid x = i θ {\displaystyle x=i\theta } yn ehangiad Cyfres Taylor ar gyfer e x {\displaystyle e^{x}} rydym yn cael: e i θ = 1 + ( i θ ) + ( i θ ) 2 2 ! + ( i θ ) 3 3 ! + ( i θ ) 4 4 ! + ( i θ ) 5 5 ! + ( i θ ) 6 6 ! + ( i θ ) 7 7 ! + . . . {\displaystyle e^{i\theta }=1+(i\theta )+{\frac {(i\theta )^{2}}{2!}}+{\frac {(i\theta )^{3}}{3!}}+{\frac {(i\theta )^{4}}{4!}}+{\frac {(i\theta )^{5}}{5!}}+{\frac {(i\theta )^{6}}{6!}}+{\frac {(i\theta )^{7}}{7!}}+...} = 1 + ( i θ ) + i 2 θ 2 2 ! + i i 2 θ 3 3 ! + i 2 i 2 θ 4 4 ! + i i 2 i 2 θ 5 5 ! + i 2 i 2 i 2 θ 6 6 ! + i i 2 i 2 i 2 θ 7 7 ! + . . . {\displaystyle =1+(i\theta )+{\frac {i^{2}\theta ^{2}}{2!}}+{\frac {ii^{2}\theta ^{3}}{3!}}+{\frac {i^{2}i^{2}\theta ^{4}}{4!}}+{\frac {ii^{2}i^{2}\theta ^{5}}{5!}}+{\frac {i^{2}i^{2}i^{2}\theta ^{6}}{6!}}+{\frac {ii^{2}i^{2}i^{2}\theta ^{7}}{7!}}+...} = 1 + ( i θ ) − θ 2 2 ! − i θ 3 3 ! + θ 4 4 ! + i θ 5 5 ! − θ 6 6 ! − i θ 7 7 ! + . . . {\displaystyle =1+(i\theta )-{\frac {\theta ^{2}}{2!}}-i{\frac {\theta ^{3}}{3!}}+{\frac {\theta ^{4}}{4!}}+i{\frac {\theta ^{5}}{5!}}-{\frac {\theta ^{6}}{6!}}-i{\frac {\theta ^{7}}{7!}}+...} = { 1 − θ 2 2 ! + θ 4 4 ! − θ 6 6 ! + . . . } + i { θ − θ 3 3 ! + θ 5 5 ! − i θ 7 7 ! + . . . } {\displaystyle =\{1-{\frac {\theta ^{2}}{2!}}+{\frac {\theta ^{4}}{4!}}-{\frac {\theta ^{6}}{6!}}+...\}+i\{\theta -{\frac {\theta ^{3}}{3!}}+{\frac {\theta ^{5}}{5!}}-i{\frac {\theta ^{7}}{7!}}+...\}} = cos ( θ ) + sin ( θ ) i {\displaystyle =\cos {(\theta )}+\sin {(\theta )i}\,} Remove adsCyfeiriadauLoading content...Loading related searches...Wikiwand - on Seamless Wikipedia browsing. On steroids.Remove ads