Top-Fragen
Zeitleiste
Chat
Kontext

Abelisierung

Faktorkommutatorgruppe Aus Wikipedia, der freien Enzyklopädie

Remove ads

Die Abelisierung (auch Abelianisierung oder Faktorkommutatorgruppe) ist eine Konstruktion aus dem mathematischen Teilgebiet der Gruppentheorie. Die Abelisierung einer Gruppe ist in gewisser Hinsicht die beste Approximation durch eine abelsche Gruppe.

Definition

Die Faktorgruppe

einer Gruppe nach ihrer Kommutatoruntergruppe wird Abelisierung von genannt. Der Begriff Abelisierung wird ebenfalls für die kanonische Surjektion

verwendet.

Remove ads

Eigenschaften

  • Die Abelisierung ist eine abelsche Gruppe; die Abelisierung einer abelschen Gruppe ist die Gruppe selbst.
  • Ist ein Gruppenhomomorphismus, so induziert die Verkettung einen kanonischen Homomorphismus ; die Abelisierung ist funktoriell.
  • Die Abelisierung ist linksadjungiert zum Vergissfunktor von der Kategorie der abelschen Gruppen in die Kategorie aller Gruppen, d. h. ist eine beliebige Gruppe und eine abelsche Gruppe, so induziert die kanonische Abbildung eine Bijektion
Anders gesagt: Jeder Homomorphismus in eine abelsche Gruppe faktorisiert über die Abelisierung.
  • Insbesondere haben und dieselben Charaktere.
  • Die Abelisierung einer Gruppe ist kanonisch dual zur Gruppenkohomologie
Remove ads

Beispiele

Verlagerung

Zusammenfassung
Kontext

Ist eine Untergruppe einer endlichen Gruppe , so gibt es einen kanonischen Homomorphismus

der Verlagerung genannt wird. Sie ist dual zur Korestriktion

lässt sich aber auch explizit beschreiben: Es sei ein Schnitt der kanonischen Projektion (kein Homomorphismus, lediglich eine Abbildung). Dann ist die Verlagerung gegeben durch

[2]
Remove ads

Quellen

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads