Top-Fragen
Zeitleiste
Chat
Kontext

Selbstadjungierte Matrix

mathematisches Objekt aus der linearen Algebra Aus Wikipedia, der freien Enzyklopädie

Remove ads

Eine selbstadjungierte Matrix ist ein Objekt aus dem mathematischen Teilgebiet der linearen Algebra. Es handelt sich um eine spezielle Art von quadratischen Matrizen. Sind die Koeffizienten einer selbstadjungierten Matrix reell, so ist sie gerade eine symmetrische Matrix, und sind die Koeffizienten komplex, so ist sie eine hermitesche Matrix.

Definition

Sei der reelle oder komplexe Zahlenkörper und sei das Standardskalarprodukt auf . Eine Matrix heißt selbstadjungiert, wenn

für alle gilt.[1] Die Matrix wird hier als lineare Abbildung auf dem aufgefasst.

Remove ads

Beispiele

  • Die Matrix
mit als der imaginären Einheit ist selbstadjungiert bezüglich des Standardskalarproduktes auf wegen
sind selbstadjungiert.
Remove ads

Eigenschaften

Zusammenfassung
Kontext

Eine reelle Matrix ist genau dann selbstadjungiert, wenn sie symmetrisch ist, also wenn gilt, da

.

Analog dazu ist eine komplexe Matrix genau dann selbstadjungiert, wenn sie hermitesch ist, also wenn gilt, da

.

Jede selbstadjungierte Matrix ist auch normal, das heißt, es gilt

.

Die Umkehrung gilt im Allgemeinen nicht.

Remove ads

Siehe auch

Einzelnachweise

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads