Top-Fragen
Zeitleiste
Chat
Kontext

Trapez-Methode

mathematisches Lösungs-Verfahren Aus Wikipedia, der freien Enzyklopädie

Remove ads

Das implizite Trapez-Verfahren ist ein Verfahren zur numerischen Lösung eines Anfangswertproblems

Es lässt sich sowohl den Runge-Kutta-Verfahren als auch den Adams-Moulton-Verfahren zuordnen. Das Trapezverfahren ist A-stabil mit der Besonderheit, dass für die Schwingungsgleichung kein Amplitudenfehler auftritt[1]. Das Verfahren lässt sich aus der Trapezregel herleiten:

mit

Remove ads

Herleitung

Zusammenfassung
Kontext

Für die Herleitung von Einschrittverfahren wird das Anfangswertproblem meist in der zu ihr äquivalenten Integralgleichung umgeformt[2]

Nun besteht die Idee bei der impliziten Trapez-Methode eine simple Quadraturformel für das Integral zu benutzen: die Trapezregel. Man approximiert in jedem -ten Schritt den Integranden wie folgt

Zusammen ergibt dies die Trapez-Methode[3]

Remove ads

Lösungsmethode

Zusammenfassung
Kontext

Zur Lösung dieses, in der Regel nichtlinearen, Gleichungssystems können verschiedene numerische Verfahren genutzt werden. Für das quadratisch konvergente Newton-Verfahren ergibt sich konkret:

Man erhält also ein lineares Gleichungssystem

wobei J die Jacobi-Matrix

,

die Einheitsmatrix und der Iterationsschritt ist.

Remove ads

Stabilität

Mit der Testgleichung bekommt man die Stabilitätsfunktion

Auf der imaginären Achse gilt , daher ist die Trapezmethode A-stabil.

Schrittweite h

Zusammenfassung
Kontext

Die (variable) Schrittweite kann aus folgender Beziehung berechnet werden:

;

bezeichnet den zugelassenen lokalen Diskretisierungsfehler. Der Ansatz liefert für die implizite Trapez-Methode

.

Dabei ist der Betrag des betragsmäßig größten Eigenwerts der Jacobi-Matrix (Spektralradius). Die numerische Bestimmung der Eigenwerte ist sehr zeitaufwendig; für den Zweck der Schrittweitenberechnung ist es im Allgemeinen ausreichend die Gesamtnorm heranzuziehen, die immer größer oder gleich der Spektralnorm ist. N ist der Rang der Jacobi-Matrix und deren Elemente.

Remove ads

Literatur

  • Hans R. Schwarz, Norbert Köckler: Numerische Mathematik. 5. Auflage, Teubner, Stuttgart 2004, ISBN 3-519-42960-8, S. 343.

Einzelnachweise

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads