Εγγεγραμμένο πολύγωνο

πολύγωνο του οποίου οι κορυφές ανήκουν στον ίδιο κύκλο From Wikipedia, the free encyclopedia

Εγγεγραμμένο πολύγωνο
Remove ads

Στην γεωμετρία, ένα κυρτό πολύγωνο λέγεται εγγεγραμμένο, εγγράψιμο ή κυκλικό αν όλες του οι κορυφές ανήκουν στον ίδιο κύκλο. Ο κύκλος λέγεται περιγεγραμμένος κύκλος του πολυγώνου και τα σημεία λέμε ότι είναι ομοκύκλια.[1]:133

Thumb
Thumb
Thumb
Ένα (εγγεγραμμένο) τρίγωνο, ένα εγγεγραμμένο τετράπλευρο και ένα εγγεγραμμένο πολύγωνο.
Remove ads

Ιδιότητες

  • Ένα κυρτό πολύγωνο είναι εγγεγραμμένο αν και μόνο αν οι μεσοκάθετοι των πλευρών , διέρχονται από το ίδιο σημείο. Το σημείο αυτό είναι το κέντρο του περιγεγραμμένου του κύκλου.
  • (Ιαπωνικό θεώρημα) Σε ένα εγγεγραμμένο πολύγωνο , για κάθε τριγωνισμό του (για ), ισχύει ότι οι ακτίνες των εγγεγγραμμένων κύκλων αυτών των τριγώνων έχουν σταθερό άθροισμα (δηλαδή αναξάρτητο του τριγωνισμού).
Remove ads

Ειδικές περιπτώσεις

  • Κάθε τρίγωνο () είναι εγγεγραμμένο.
  • Στα τετράπλευρα, ισχύουν οι εξής αναγκαίες και ικανές συνθήκες για να είναι εγγεγραμμένο:
    • Ένα κυρτό τετράπλευρο είναι εγγεγραμμένο αν και μόνο αν δύο απέναντι γωνίες του είναι παραπληρωματικές, δηλαδή ή .
    • Ένα κυρτό τετράπλευρο είναι εγγεγραμμένο αν και μόνο αν μία γωνία του είναι ίση με την εξωτερική της απέναντί της.
    • Ένα κυρτό τετράπλευρο είναι εγγεγραμμένο αν και μόνο αν μία από τις πλευρές φαίνεται από τις άλλες δύο κορυφές από ίσες γωνίες, π.χ. .
  • Όλα τα κανονικά πολύγωνα είναι εγγεγραμμένα.
Remove ads

Δείτε επίσης

Περαιτέρω ανάγνωση

Ξενόγλωσσα άρθρα

  • P. Robbins, David (1995). «Areas of Polygons Inscribed in a Circle». The American Mathematical Monthly 102 (6): 523-530. doi:10.2307/2974766.
  • Collings, S. N. (1967). «Cyclic Polygons and Their Euler Lines». The Mathematical Gazette 51 (376): 108-114. doi:10.2307/3614382.

Παραπομπές

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads