Converse relation
Reversal of the order of elements of a binary relation / From Wikipedia, the free encyclopedia
Dear Wikiwand AI, let's keep it short by simply answering these key questions:
Can you list the top facts and stats about Converse relation?
Summarize this article for a 10 years old
In mathematics, the converse relation, or transpose, of a binary relation is the relation that occurs when the order of the elements is switched in the relation. For example, the converse of the relation 'child of' is the relation 'parent of'. In formal terms, if and
are sets and
is a relation from
to
then
is the relation defined so that
if and only if
In set-builder notation,
The notation is analogous with that for an inverse function. Although many functions do not have an inverse, every relation does have a unique converse. The unary operation that maps a relation to the converse relation is an involution, so it induces the structure of a semigroup with involution on the binary relations on a set, or, more generally, induces a dagger category on the category of relations as detailed below. As a unary operation, taking the converse (sometimes called conversion or transposition) commutes with the order-related operations of the calculus of relations, that is it commutes with union, intersection, and complement.
Since a relation may be represented by a logical matrix, and the logical matrix of the converse relation is the transpose of the original, the converse relation is also called the transpose relation.[1] It has also been called the opposite or dual of the original relation,[2] or the inverse of the original relation,[3][4][5] or the reciprocal of the relation
[6]
Other notations for the converse relation include or