# Convex set

## In geometry, set whose intersection with every line is a single line segment / From Wikipedia, the free encyclopedia

#### Dear Wikiwand AI, let's keep it short by simply answering these key questions:

Can you list the top facts and stats about Convex set?

Summarize this article for a 10 year old

In geometry, a subset of a Euclidean space, or more generally an affine space over the reals, is **convex** if, given any two points in the subset, the subset contains the whole line segment that joins them. Equivalently, a **convex set** or a **convex region** is a subset that intersects every line into a single line segment (possibly empty).^{[1]}^{[2]}
For example, a solid cube is a convex set, but anything that is hollow or has an indent, for example, a crescent shape, is not convex.

The boundary of a convex set in the plane is always a convex curve. The intersection of all the convex sets that contain a given subset A of Euclidean space is called the convex hull of A. It is the smallest convex set containing A.

A convex function is a real-valued function defined on an interval with the property that its epigraph (the set of points on or above the graph of the function) is a convex set. Convex minimization is a subfield of optimization that studies the problem of minimizing convex functions over convex sets. The branch of mathematics devoted to the study of properties of convex sets and convex functions is called convex analysis.

The notion of a convex set can be generalized as described below.