# Gibbs sampling

## Monte Carlo algorithm / From Wikipedia, the free encyclopedia

#### Dear Wikiwand AI, let's keep it short, summarize this topic like I'm... Ten years old or a College student

In statistics, **Gibbs sampling** or a **Gibbs sampler** is a Markov chain Monte Carlo (MCMC) algorithm for obtaining a sequence of observations which are approximated from a specified multivariate probability distribution, when direct sampling is difficult. This sequence can be used to approximate the joint distribution (e.g., to generate a histogram of the distribution); to approximate the marginal distribution of one of the variables, or some subset of the variables (for example, the unknown parameters or latent variables); or to compute an integral (such as the expected value of one of the variables). Typically, some of the variables correspond to observations whose values are known, and hence do not need to be sampled.

Part of a series on |

Bayesian statistics |
---|

Posterior = Likelihood × Prior ÷ Evidence |

Background |

Model building |

Posterior approximation |

Estimators |

Gibbs sampling is commonly used as a means of statistical inference, especially Bayesian inference. It is a randomized algorithm (i.e. an algorithm that makes use of random numbers), and is an alternative to deterministic algorithms for statistical inference such as the expectation-maximization algorithm (EM).

As with other MCMC algorithms, Gibbs sampling generates a Markov chain of samples, each of which is correlated with nearby samples. As a result, care must be taken if independent samples are desired. Generally, samples from the beginning of the chain (the *burn-in period*) may not accurately represent the desired distribution and are usually discarded.