History of life

Processes by which organisms evolved on Earth / From Wikipedia, the free encyclopedia

Dear Wikiwand AI, let's keep it short by simply answering these key questions:

Can you list the top facts and stats about History of life?

Summarize this article for a 10 year old

SHOW ALL QUESTIONS

The history of life on Earth traces the processes by which living and fossil organisms evolved, from the earliest emergence of life to present day. Earth formed about 4.5 billion years ago (abbreviated as Ga, for gigaannum) and evidence suggests that life emerged prior to 3.7 Ga.[1][2][3] Although there is some evidence of life as early as 4.1 to 4.28 Ga, it remains controversial due to the possible non-biological formation of the purported fossils.[1][4][5][6]

The similarities among all known present-day species indicate that they have diverged through the process of evolution from a common ancestor.[7] Only a very small percentage of species have been identified: one estimate claims that Earth may have 1 trillion species, because "identifying every microbial species on Earth presents a huge challenge."[8][9] However, only 1.75–1.8 million have been named[10][11] and 1.8 million documented in a central database.[12] These currently living species represent less than one percent of all species that have ever lived on Earth.[13][14]

The earliest evidence of life comes from biogenic carbon signatures[2][3] and stromatolite fossils[15] discovered in 3.7 billion-year-old metasedimentary rocks from western Greenland. In 2015, possible "remains of biotic life" were found in 4.1 billion-year-old rocks in Western Australia.[16][5] In March 2017, putative evidence of possibly the oldest forms of life on Earth was reported in the form of fossilized microorganisms discovered in hydrothermal vent precipitates in the Nuvvuagittuq Belt of Quebec, Canada, that may have lived as early as 4.28 billion years ago, not long after the oceans formed 4.4 billion years ago, and not long after the formation of the Earth 4.54 billion years ago.[17][18]

Microbial mats of coexisting bacteria and archaea were the dominant form of life in the early Archean eon and many of the major steps in early evolution are thought to have taken place in this environment.[19] The evolution of photosynthesis by cyanobacteria, around 3.5 Ga, eventually led to a buildup of its waste product, oxygen, in the ocean and then the atmosphere after depleting all available reductant substances on the Earth's surface, leading to the Great Oxygenation Event, beginning around 2.4 Ga.[20] The earliest evidence of eukaryotes (complex cells with organelles) dates from 1.85 Ga,[21][22] likely due to symbiogenesis between anaerobic archaea and aerobic proteobacteria in co-adaptation against the new oxidative stress. While eukaryotes may have been present earlier, their diversification accelerated when aerobic cellular respiration by the endosymbiont mitochondria provided a more abundant source of biological energy. Later, around 1.6 Ga, some eukaryotes gained the ability to photosynthesize via endosymbiosis with cyanobacteria, and gave rise to various algae that eventually overtook cyanobacteria as the dominant primary producers.

At around 1.7 Ga, multicellular organisms began to appear, with differentiated cells performing specialised functions.[23] Sexual reproduction, which involves the fusion of male and female reproductive cells (gametes) to create a zygote in a process called fertilization is, in contrast to asexual reproduction, the primary method of reproduction for the vast majority of macroscopic organisms, including almost all eukaryotes (which includes animals and plants).[24] However the origin and evolution of sexual reproduction remain a puzzle for biologists though it did evolve from a common ancestor that was a single celled eukaryotic species.[25] Bilateria, animals having a left and a right side that are mirror images of each other, appeared by 555 Ma (million years ago).[26]

The evolution of plants from freshwater green algae dated back even to about 1 billion years ago,[27] although evidence suggests that microorganisms formed the earliest terrestrial ecosystems, at least 2.7 Ga.[28] Microorganisms are thought to have paved the way for the inception of land plants in the Ordovician period. Land plants were so successful that they are thought to have contributed to the Late Devonian extinction event.[29] (The long causal chain implied seems to involve (1) the success of early tree archaeopteris drew down CO2 levels, leading to global cooling and lowered sea levels, (2) roots of archeopteris fostered soil development which increased rock weathering, and the subsequent nutrient run-off may have triggered algal blooms resulting in anoxic events which caused marine-life die-offs. Marine species were the primary victims of the Late Devonian extinction.)

Ediacara biota appeared during the Ediacaran period,[30] while vertebrates, along with most other modern phyla originated about 525 Ma during the Cambrian explosion.[31] During the Permian period, synapsids, including the ancestors of mammals, dominated the land,[32] but most of this group became extinct in the Permian–Triassic extinction event 252 Ma.[33] During the recovery from this catastrophe, archosaurs became the most abundant land vertebrates;[34] one archosaur group, the dinosaurs, dominated the Jurassic and Cretaceous periods.[35] After the Cretaceous–Paleogene extinction event 66 Ma killed off the non-avian dinosaurs,[36] mammals increased rapidly in size and diversity.[37] Such mass extinctions may have accelerated evolution by providing opportunities for new groups of organisms to diversify.[38]

Oops something went wrong: